深度学习基础 - 从泰勒级数到直线

深度学习基础 - 从泰勒级数到直线

flyfish

该图使用LibreOffice Draw 画
在这里插入图片描述

f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) x − x 0 1 ! + f ′ ′ ( x 0 ) ( x − x 0 ) 2 2 ! + ⋯ + f ( n ) ( x 0 ) ( x − x 0 ) n n ! \mathrm{f}(\mathrm{x}) \approx \mathrm{f}\left(x_{0}\right)+\mathrm{f}^{\prime}\left(x_{0}\right) \frac{x-x_{0}}{1 !}+f^{\prime \prime}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{2}}{2 !}+\cdots+f^{(n)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{n}}{n !} f(x)f(x0)+f(x0)1!xx0+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n
n如果是正无穷,可换成等号
( x − x 0 ) 1 → 0 ( x − x 0 ) 2 → 0 ( x − x 0 ) n → 0 \quad\left(x-x_{0}\right)^{1} \rightarrow 0 \quad\left(x-x_{0}\right)^{2} \rightarrow 0 \quad\left(x-x_{0}\right)^{n} \rightarrow 0 (xx0)10(xx0)20(xx0)n0
一阶展开
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) f(x)=f(x0)+f(x0)(xx0)

一阶展开的由来
Δ y = f ( x ) − f ( x 0 ) , Δ x = x − x 0 f ( x ) − f ( x 0 ) = f ′ ( x 0 ) ∗ ( x − x 0 ) f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) \begin{array}{l}{\Delta y=f(x)-f\left(x_{0}\right), \Delta x=x-x_{0}} \\\\ {f(x)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) *\left(x-x_{0}\right)} \\ \\{f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}\end{array} Δy=f(x)f(x0),Δx=xx0f(x)f(x0)=f(x0)(xx0)f(x)=f(x0)+f(x0)(xx0)

怎么变成直线的
k 1 + k 2 x − k 2 x 0 = k 2 x + b {k_{1}}+k_{2} x-k_{2} x_{0}= k_{2} x+b k1+k2xk2x0=k2x+b
因为
f ( x 0 ) = k 1 f\left(x_{0}\right)=k_1 f(x0)=k1,
f ′ ( x 0 ) = k 2 f^{\prime}\left(x_{0}\right)=k_2 f(x0)=k2,
k 2 x + b k_{2} x+b k2x+b就是直线

线性近似

在这里插入图片描述
根据直线的点斜式方程得
y = f ( a ) + f ′ ( a ) ( x − a ) . y=f(a)+f'(a)(x−a). y=f(a)+f(a)(xa).

L ( x ) = f ( a ) + f ′ ( a ) ( x − a ) . L(x)=f(a)+f'(a)(x−a). L(x)=f(a)+f(a)(xa).

x \sqrt{x} x 的线性近似

找到 f ( x ) = x f(x)=\sqrt{x} f(x)=x x = 9 x=9 x=9的线性近似,并估算 9.1 \sqrt{9.1} 9.1

L ( x ) = f ( 9 ) + f ′ ( 9 ) ( x − 9 ) . L(x)=f(9)+f'(9)(x−9). L(x)=f(9)+f(9)(x9).

f ( x ) = x ⇒ f ( 9 ) = 9 = 3 f(x)=\sqrt{x}⇒f(9)=\sqrt{9}=3 f(x)=x f(9)=9 =3

f ′ ( x ) = 1 2 x ⇒ f ′ ( 9 ) = 1 2 9 = 1 6 f'(x)=\frac{1}{2\sqrt{x}}⇒f'(9)=\frac{1}{2\sqrt{9}}=\frac{1}{6} f(x)=2x 1f(9)=29 1=61

L ( x ) = 3 + 1 6 ( x − 9 ) L(x)=3+\frac{1}{6}(x−9) L(x)=3+61(x9)

9.1 = f ( 9.1 ) ≈ L ( 9.1 ) = 3 + 1 6 ( 9.1 − 9 ) ≈ 3.0167 \sqrt{9.1}=f(9.1)≈L(9.1)=3+\frac{1}{6}(9.1−9)≈3.0167 9.1 =f(9.1)L(9.1)=3+61(9.19)3.0167
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值