LLaMA-Factory 使用 alpaca 格式的数据集

LLaMA-Factory 使用 alpaca 格式的数据集

flyfish

alpaca 格式最初与Stanford大学的一个研究项目相关联,该项目旨在通过少量高质量的数据来微调大型语言模型。它受到了Alpaca模型(一种基于LLaMA的指令跟随模型)的影响,该模型是在Meta AI的LLaMA基础上进行改进而来的。

alpaca 格式的数据集应遵循以下格式:

[
  {
    "instruction": "user instruction (required)",
    "input": "user input (optional)",
    "output": "model response (required)",
    "system": "system prompt (optional)",
    "history": [
      ["user instruction in the first round (optional)", "model response in the first round (optional)"],
      ["user instruction in the second round (optional)", "model response in the second round (optional)"]
    ]
  }
]

在 data/dataset_info.json 文件中提供您的数据集定义,并采用以下格式:

对于 alpaca 格式的数据集,其 dataset_info.json 文件中的列应为:

"dataset_name": {
  "file_name": "dataset_name.json",
  "columns": {
    "prompt": "instruction",
    "query": "input",
    "response": "output",
    "system": "system",
    "history": "history"
  }
}

字段作用

instruction: 用户给出的指令或问题,是必须提供的信息。
input: 可选的额外输入信息,可以为空,用于提供给定指令的上下文或具体例子。
output: 模型根据指令和输入产生的响应,是必须提供的信息。
system: 可选的系统提示,用来为整个对话设定场景或提供指导原则。
history: 一个列表,包含之前轮次的对话记录,每一对都是用户消息和模型回复。这有助于保持对话的一致性和连贯性。

示例1: 单轮对话

[
  {
    "instruction": "解释一下什么是人工智能。",
    "input": "",
    "output": "人工智能(Artificial Intelligence, AI)是指由人制造出来的具有一定智能的系统,能够理解和学习人类的行为,并且能够执行任务、解决问题以及适应新环境。它通常包括机器学习、自然语言处理、计算机视觉等技术领域。",
    "system": "你是一位专业的AI讲师。",
    "history": []
  }

]

在这个例子中:

instruction 是用户给模型的指令。
input 字段为空,因为没有额外的信息提供给模型。
output 是模型根据指令生成的回答。
system 提供了一个角色设定,让模型扮演一位AI讲师。
history 列表为空,表示这是一个新的对话,之前没有对话历史。

示例2: 多轮对话

[
  {
    "instruction": "告诉我明天济南的天气。",
    "input": "",
    "output": "明天济南的天气预报显示是晴天,气温大约在15到25摄氏度之间。",
    "system": "你是一位气象专家。",
    "history": [
      ["今天济南的天气怎么样?", "今天济南的天气是多云转晴,气温大约在10到20摄氏度之间。"]
    ]
  },
  {
    "instruction": "那后天呢?",
    "input": "",
    "output": "后天济南可能会有小雨,气温会稍微下降一些,预计在13到22摄氏度左右。",
    "system": "你是一位气象专家。",
    "history": [
      ["今天济南的天气怎么样?", "今天济南的天气是多云转晴,气温大约在10到20摄氏度之间。"],
      ["告诉我明天济南的天气。", "明天济南的天气预报显示是晴天,气温大约在15到25摄氏度之间。"]
    ]
  }

]

在这个多轮对话的例子中:

第一条记录包含了用户询问明天济南天气的指令,以及模型给出的回答。
history 包含了前一轮对话的内容,这样可以让模型理解当前对话的上下文。
第二条记录则是继续上一轮的对话,询问后天的天气情况,同时history也更新为包含前面所有对话的历史。

模型能够一次性从新闻文章中提取出多个关键信息(如事件类型、地点、时间等),alpaca格式的数据集

[
  {
    "instruction": "从以下文本中提取发生的事件类型、地点和时间。",
    "input": "昨天,在加州的一家购物中心发生了一起火灾事故,幸好没有人员伤亡。",
    "output": "事件类型: 火灾; 地点: 加州; 时间: 昨天",
    "system": "你是一位信息分析师,擅长从文本中提取关键信息。",
    "history": []
  },
  {
    "instruction": "从以下文本中提取发生的事件类型、地点和时间。",
    "input": "本周三,加州市中心的一座办公楼发生了爆炸,造成多人受伤。",
    "output": "事件类型: 爆炸; 地点: 加州市中心; 时间: 本周三",
    "system": "你是一位信息分析师,擅长从文本中提取关键信息。",
    "history": []
  },
  {
    "instruction": "从以下文本中提取发生的事件类型、地点和时间。",
    "input": "上个月底,加州的一个工业园区内发生化学品泄漏,导致附近居民紧急疏散。",
    "output": "事件类型: 化学品泄漏; 地点: 加州的一个工业园区; 时间: 上个月底",
    "system": "你是一位信息分析师,擅长从文本中提取关键信息。",
    "history": []
  }
]

instruction 给出了明确的任务指示,即从给定文本中提取事件类型、地点和时间。
input 是包含相关信息的原始新闻文本。
output 则是模型应该生成的答案,它以结构化的方式列出了所有的关键信息。
system 提供了角色设定,帮助模型理解其任务背景。
history 在这个情况下为空,因为每个条目都是独立的单轮对话。

Llama-factory是一个由利马养殖而来的工厂。利马作为一种动物在许多地方被用于毛和肉制品的生产。利马的毛是非常珍贵和高质量的,可以用于制作织物、毛线和毛毯等。因此,利马养殖业成为了一个潜力巨大和有利可图的行业。 Llama-factory的主要目标是通过高效率和可持续的生产方式,生产出高质量的利马制品。工厂采用先进的技术和设备,提高生产效率和产品质量。同时,为了保护环境和动物福利,工厂也将注重科学农业和动物养殖实践。 工厂保证了从利马养殖到制品加工的全过程的可追溯性和质量控制。优质利马毛的选择、剪切和加工过程严格按照标准操作规程进行,确保最终产品的优质和安全。 Llama-factory还将致力于产品的创新和市场开拓。除了传统的利马制品,如毛线和毛毯,工厂还会开发出更多样化的产品,如利马织物和时尚配饰。通过与设计师和品牌的合作,工厂将推出独特且具有竞争力的产品,满足不同消费者的需求。 同时,Llama-factory也将关注社会责任和可持续发展。工厂将积极参与当地社区的福利和环保项目,为地方经济和环境的改善做出贡献。 总之,Llama-factory将在利马养殖和产品制造领域发挥重要作用。通过高质量的利马制品和可持续的生产方式,工厂将为消费者提供优质的产品,同时为当地社区和环境做出积极贡献。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值