LoRA (Low-Rank Adaptation) 的核心与原理

LoRA (Low-Rank Adaptation) 的核心与原理

flyfish

1. 背景与动机

1.1 模型微调的挑战

深度学习中大型模型(如 GPT 等)的参数量巨大(通常在数十亿甚至数千亿级别)。对这些模型进行微调时,主要面临以下挑战:

  • 计算成本高:全参数微调需要优化所有参数,这对存储和计算资源要求极高。
  • 数据适配难度大:不同任务的数据分布可能大不相同,对全参数微调需要更多的数据和训练时间。
  • 存储开销大:每个任务都需要保存一整套模型权重,导致存储压力巨大。
1.2 低秩近似的启发

LoRA 的灵感来自 矩阵低秩近似 的思想。大型模型的权重矩阵通常具有冗余性,可以通过低秩分解减少参数量,同时保留大部分信息。因此,LoRA 提出了以低秩矩阵更新权重的思路。


2. LoRA 的核心思想

2.1 参数分解

假设我们需要微调的权重矩阵为 W W W(形状为 d × k d \times k d×k),其更新形式通常为:
W ′ = W + Δ W W' = W + \Delta W W=W+ΔW
其中 Δ W \Delta W ΔW 是要优化的权重更新矩阵。

LoRA 的核心是将 Δ W \Delta W ΔW 分解为两个低秩矩阵 A A A B B B 的乘积:
Δ W = A B \Delta W = A B ΔW=AB
其中:

  • A ∈ R d × r A \in \mathbb{R}^{d \times r} ARd×r B ∈ R r × k B \in \mathbb{R}^{r \times k} BRr×k
  • r ≪ min ⁡ ( d , k ) r \ll \min(d, k) rmin(d,k) 是低秩的维度,远小于 W W W 的原始维度;
  • 原始参数 W W W 不变,只更新小规模的 A A A B B B
2.2 权重更新形式

将低秩分解融入到模型训练中后,权重矩阵的更新可以写为:
W ′ = W + A B W' = W + A B W=W+AB
这种形式仅需要优化 A A A B B B,极大地减少了训练时的参数量和内存开销。


3. 数学原理

3.1 矩阵低秩近似

LoRA 的核心原理基于矩阵低秩近似。对于一个高维矩阵 W W W,我们假设它的更新 Δ W \Delta W ΔW 存在低秩结构,即:
Δ W ≈ A B \Delta W \approx A B ΔWAB
这种假设来源于高维数据中普遍存在的冗余性。例如,在自然语言处理任务中,词向量或句子向量的分布通常在低维子空间中具有主要的变化方向。

3.2 奇异值分解 (SVD)

低秩近似的数学基础是 奇异值分解 (SVD)。假设矩阵 W W W 的 SVD 为:
W = U Σ V ⊤ W = U \Sigma V^\top W=UΣV

  • U U U V V V 是正交矩阵,表示正交方向;
  • Σ \Sigma Σ 是对角矩阵,其对角线上的奇异值表示矩阵的拉伸强度。

通过截断 Σ \Sigma Σ 中较小的奇异值,矩阵可以被近似为低秩形式。这一思想为 LoRA 提供了理论依据。

3.3 优化形式

在训练过程中,LoRA 只优化 A A A B B B,而不是完整的 W W W。这种分解形式有效减少了参数量,优化问题的搜索空间从 d × k d \times k d×k 减少到 r × ( d + k ) r \times (d + k) r×(d+k)


4. LoRA 的实现细节

4.1 插入位置

LoRA 通常插入到模型的特定层,例如 Transformer 的注意力层或前馈网络层。具体来说:

  1. 注意力层的投影矩阵:用于计算 Q , K , V Q, K, V Q,K,V 的权重矩阵适合作为低秩分解的目标;
  2. 前馈网络的线性层:这些权重矩阵也可通过 LoRA 进行优化。
4.2 参数化形式

以自注意力机制中的权重矩阵 W q W_q Wq(用于生成 Query 向量)为例,LoRA 的更新形式为:
W q ′ = W q + Δ W q , Δ W q = A q B q W_q' = W_q + \Delta W_q, \quad \Delta W_q = A_q B_q Wq=Wq+ΔWq,ΔWq=AqBq
其中 A q ∈ R d × r A_q \in \mathbb{R}^{d \times r} AqRd×r B q ∈ R r × k B_q \in \mathbb{R}^{r \times k} BqRr×k

4.3 零初始化

为了避免影响模型初始性能,LoRA 通常将 A A A B B B 在初始化时设置为零矩阵。这样,初始权重矩阵 W W W 完全保持原样。

名词解释

名词解释

1. 奇异值 (Singular Value) 的例子

假设我们有一个矩阵 W W W

W = [ 3 2 2 3 ] W = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} W=[3223]

对其进行奇异值分解,得到:

W = U Σ V ⊤ W = U \Sigma V^\top W=UΣV
其中:

  • U = [ 1 / 2 − 1 / 2 1 / 2 1 / 2 ] U = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} U=[1/2 1/2 1/2 1/2 ]
    (输入方向的正交基)
  • Σ = [ 5 0 0 1 ] \Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix} Σ=[5001]
    (奇异值对角矩阵)
  • V ⊤ = [ 1 / 2 1 / 2 − 1 / 2 1 / 2 ] V^\top = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} V=[1/2 1/2 1/2 1/2 ]
    (输出方向的正交基)

直观理解:

  1. 奇异值 σ 1 = 5 , σ 2 = 1 \sigma_1 = 5, \sigma_2 = 1 σ1=5,σ2=1
    • σ 1 = 5 \sigma_1 = 5 σ1=5表示 W W W沿着某个特定方向放大了数据的长度 5 倍;
    • σ 2 = 1 \sigma_2 = 1 σ2=1表示另一个方向上,数据的长度没有被拉伸或压缩。
  2. 大的奇异值表示该方向上的信息贡献更大,小的奇异值方向上的信息较少。

2. 特征值 (Eigenvalue) 的例子

假设我们有一个方阵 A A A

A = [ 4 2 1 3 ] A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} A=[4123]

计算特征值,解特征方程 det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0

λ 1 = 5 , λ 2 = 2 \lambda_1 = 5, \quad \lambda_2 = 2 λ1=5,λ2=2

计算特征向量:

  • 对应 λ 1 = 5 \lambda_1 = 5 λ1=5,特征向量为 v 1 = [ 2 1 ] v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} v1=[21]
  • 对应 λ 2 = 2 \lambda_2 = 2 λ2=2,特征向量为 v 2 = [ − 1 1 ] v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} v2=[11]

直观理解:

  1. 特征值表示矩阵沿着特定方向拉伸或缩放的强度:
    • λ 1 = 5 \lambda_1 = 5 λ1=5:在方向 v 1 v_1 v1上被拉伸 5 倍;
    • λ 2 = 2 \lambda_2 = 2 λ2=2:在方向 v 2 v_2 v2上被拉伸 2 倍。
  2. 特征向量定义了不改变方向的变换轴。

3. 低秩子空间 (Low-Rank Subspace) 的例子

假设有一个矩阵 M M M

M = [ 1 2 2 4 ] M = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} M=[1224]

计算矩阵的秩(行和列的线性独立数):

  • 第二行是第一行的 2 倍,所以矩阵的秩为 1。

这意味着矩阵的所有信息都集中在一个一维子空间上。

低秩近似:

M M M分解为 U Σ V ⊤ U \Sigma V^\top UΣV,保留最大的奇异值 σ 1 = 5 \sigma_1 = 5 σ1=5,得到:
M ≈ [ 1 2 ] [ 1 2 ] = [ 1 2 2 4 ] M \approx \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} =\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} M[12][12]=[1224]
即,矩阵的信息都能被一个一维向量描述。

直观理解:

低秩子空间表示矩阵的信息被压缩到一个低维空间中。矩阵的复杂度减少,但主要信息得以保留。


4. 正交矩阵 (Orthogonal Matrix) 的例子

假设有一个正交矩阵 Q Q Q
Q = [ 1 / 2 1 / 2 − 1 / 2 1 / 2 ] Q = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} Q=[1/2 1/2 1/2 1/2 ]

验证正交性:
Q ⊤ Q = [ 1 / 2 − 1 / 2 1 / 2 1 / 2 ] [ 1 / 2 1 / 2 − 1 / 2 1 / 2 ] = [ 1 0 0 1 ] = I Q^\top Q = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} =\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I QQ=[1/2 1/2 1/2 1/2 ][1/2 1/2 1/2 1/2 ]=[1001]=I

直观理解:

正交矩阵的列(或行)是相互垂直的单位向量,表示不同方向上的独立特征。它们不会失真地改变矩阵变换后的数据方向。


5. 奇异值矩阵 (Singular Value Matrix) 的例子

假设奇异值矩阵为:
Σ = [ 3 0 0 0 2 0 0 0 0 ] \Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} Σ= 300020000

这表示矩阵的变换具有以下特性:

  1. 沿着第一个方向拉伸 3 倍;
  2. 沿着第二个方向拉伸 2 倍;
  3. 沿着第三个方向,信息为零。

按照定义的方式理解

正交基 (Orthogonal Basis)

定义
正交基是一组相互 正交(即两两垂直,内积为 0)且 标准化(每个向量的长度为 1) 的向量,构成一个向量空间的基。

假设 V V V 是一个 n n n-维向量空间,那么正交基是 V V V 的一组基向量:
{ v 1 , v 2 , … , v n } \{v_1, v_2, \ldots, v_n\} {v1,v2,,vn}
满足:

  1. 正交性:对任意 i ≠ j i \neq j i=j ⟨ v i , v j ⟩ = 0 \langle v_i, v_j \rangle = 0 vi,vj=0
  2. 标准化:对任意 i i i ∥ v i ∥ = 1 \|v_i\| = 1 vi=1

直观理解

正交基可以看作是一组坐标轴,每个轴之间互相垂直。例如二维空间中的标准单位基:
[ 1 0 ] 和 [ 0 1 ] \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{和} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} [10][01]
是一个正交基。


奇异值和特征值的关系与区别

  1. 相同点

    • 二者都描述了矩阵的拉伸或缩放特性。
    • 对于方阵,奇异值和特征值在某些情况下有直接联系。
  2. 不同点

    • 适用范围
      • 特征值只适用于方阵;
      • 奇异值适用于任意矩阵(包括非方阵)。
    • 计算方式
      • 奇异值通过奇异值分解 W = U Σ V ⊤ W = U \Sigma V^\top W=UΣV 得到,对应 W ⊤ W W^\top W WW W W ⊤ W W^\top WW 的特征值平方根;
      • 特征值通过特征方程 det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0 计算。
    • 物理意义
      • 奇异值表示矩阵沿正交方向的拉伸强度;
      • 特征值表示矩阵沿特征向量方向的缩放强度。

对角矩阵 (Diagonal Matrix)

定义
对角矩阵是指只有主对角线上的元素非零,其余元素全为零的矩阵。
形式为:
Σ = [ σ 1 0 0 ⋯ 0 0 σ 2 0 ⋯ 0 0 0 σ 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ 0 0 0 0 ⋯ σ n ] \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 & \cdots & 0 \\ 0 & \sigma_2 & 0 & \cdots & 0 \\ 0 & 0 & \sigma_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & \sigma_n \end{bmatrix} Σ= σ10000σ20000σ300000σn

其中, σ 1 , σ 2 , … , σ n \sigma_1, \sigma_2, \ldots, \sigma_n σ1,σ2,,σn 是主对角线上的非零元素。

直观理解

  • 对角矩阵仅对数据的每个方向做独立拉伸或压缩。
  • 它是一种最简单的矩阵形式,因为它没有“交叉作用”(非对角线元素为 0)。

结合 SVD 理解

在奇异值分解中,矩阵 W W W 被分解为:
W = U Σ V ⊤ W = U \Sigma V^\top W=UΣV
其中:

  1. U U U V V V:正交矩阵,其列向量是正交基,表示输入和输出空间的方向;
  2. Σ \Sigma Σ:对角矩阵,其对角线上的奇异值表示沿正交基方向的拉伸强度。

例子

假设:
W = [ 3 0 4 0 ] W = \begin{bmatrix} 3 & 0 \\ 4 & 0 \end{bmatrix} W=[3400]

SVD 分解为:
W = U Σ V ⊤ , 其中: W = U \Sigma V^\top, \quad \text{其中:} W=UΣV,其中:

  1. U = [ 0.6 − 0.8 0.8 0.6 ] U = \begin{bmatrix} 0.6 & -0.8 \\ 0.8 & 0.6 \end{bmatrix} U=[0.60.80.80.6]:输入方向的正交基;
  2. V = [ 1 0 0 1 ] V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} V=[1001]:输出方向的正交基;
  3. Σ = [ 5 0 0 0 ] \Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix} Σ=[5000]:奇异值矩阵,表示仅在某一方向上拉伸 5 倍。

1. 奇异值 (Singular Value)

定义
奇异值是描述一个矩阵变换特性的标量,它体现了矩阵在不同方向上对数据的拉伸或压缩程度。

对于一个矩阵 W ∈ R m × n W \in \mathbb{R}^{m \times n} WRm×n,通过 奇异值分解(SVD) 得到:
W = U Σ V ⊤ W = U \Sigma V^\top W=UΣV

  • Σ \Sigma Σ 是对角矩阵,其对角线上的值称为矩阵 W W W奇异值,按从大到小排列。

物理意义

  1. 方向变换强度:奇异值告诉我们,矩阵 W W W 对某些方向的作用有多大。例如,大的奇异值方向上,数据被放大较多;小的奇异值方向上,数据被压缩或忽略。
  2. 信息贡献:大的奇异值对应重要信息,小的奇异值对应冗余或噪声。

2. 特征值 (Eigenvalue)

定义
特征值是线性变换的一个标量,用于描述变换后的向量如何被拉伸或缩放。对于一个方阵 A ∈ R n × n A \in \mathbb{R}^{n \times n} ARn×n,其特征值 λ \lambda λ 满足:
A v = λ v A v = \lambda v Av=λv
其中 v ≠ 0 v \neq 0 v=0 是对应的特征向量。

奇异值与特征值的关系

  • 奇异值是特征值的广义形式,适用于非方阵。
  • 如果 W W W 是方阵,则 W W W 的奇异值是 W ⊤ W W^\top W WW W W ⊤ W W^\top WW 的特征值的平方根。

3. 低秩子空间 (Low-Rank Subspace)

秩的定义
矩阵的秩(Rank)是其线性独立行或列的最大数量,反映了矩阵的维度和复杂度。

低秩子空间的含义
对于一个高维矩阵 W W W,低秩子空间表示矩阵主要信息的一个低维投影。这是因为:

  • 大多数实际应用中,矩阵的数据存在冗余,秩会远小于矩阵的行列数。
  • 低秩子空间通过保留主要奇异值,捕获了矩阵中最重要的信息。

低秩的实际应用

  • 在 LoRA 中,通过限制矩阵的秩 r r r,将优化限制在一个较小的子空间内,从而实现参数高效化。

4. 正交矩阵 (Orthogonal Matrix)

定义
正交矩阵 Q Q Q 满足:
Q ⊤ Q = I Q^\top Q = I QQ=I
其中 Q ⊤ Q^\top Q Q Q Q 的转置矩阵, I I I 是单位矩阵。

性质

  1. 列向量或行向量两两正交,且每个向量的模长为 1;
  2. 正交矩阵的逆矩阵等于其转置矩阵。

在 SVD 中的作用

  • 奇异值分解中的矩阵 U U U V V V 都是正交矩阵,分别代表输入和输出数据的正交方向。

5. 奇异值矩阵 (Singular Value Matrix)

定义
奇异值矩阵 Σ \Sigma Σ 是一个对角矩阵,形如:
Σ = [ σ 1 0 ⋯ 0 0 σ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ σ r ] \Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \\ \end{bmatrix} Σ= σ1000σ2000σr

  • σ 1 , σ 2 , … , σ r \sigma_1, \sigma_2, \ldots, \sigma_r σ1,σ2,,σr 是矩阵 W W W 的奇异值,按从大到小排列;
  • 非方阵时,剩余对角线元素为零。

作用
奇异值矩阵表示矩阵的“拉伸程度”,它决定了矩阵在不同方向上的变化幅度。


联系与直观理解

  1. 奇异值 vs 特征值

    • 奇异值描述矩阵对向量的拉伸或压缩强度,是所有矩阵都适用的性质;
    • 特征值是特定方向上矩阵的缩放因子,只适用于方阵。
  2. 低秩子空间

    • 大的奇异值对应的方向是矩阵的核心信息,定义了低秩子空间;
    • LoRA 通过限制在低秩子空间优化,节约计算和存储成本。
  3. 正交矩阵与奇异值矩阵

    • 奇异值分解用正交矩阵 U U U V V V 描述了矩阵的方向,用奇异值矩阵 Σ \Sigma Σ 描述了各方向的强度。
<think>嗯,用户问的是在银行系统已经接入了DeepSeek模型的情况下,如何进一步用RAG和LoRA技术优化模型性能,并且要求接入部分的代码用Java写。首先,我需要确认自己对这两个技术的理解是否正确,然后再考虑如何在Java中实现。 首先,RAG是检索增强生成,结合了检索外部知识库和生成模型的能力。在银行场景中,可能需要实时查询金融产品信息、政策法规或者用户历史数据。所以,用户可能需要一个高效的检索系统,比如使用Elasticsearch或者向量数据库,然后结合生成模型来生成更准确的回答。 然后是LoRA,这是一种微调大模型的方法,通过矩阵适应,可以在不改变原模型参数的情况下,用较小的参数量来调整模型行为。对于银行来说,可能需要在特定任务上微调模型,比如客服对话、风险评估等,同时保持模型原有的通用能力。 接下来,用户需要的是Java代码示例。不过,这里可能存在一些挑战,因为通常像LoRA这样的微调操作可能在Python中更常见,使用诸如Hugging Face的Transformers库。而Java在深度学习框架方面可能不如Python丰富,但仍有Deep Learning4J这样的库。不过,用户可能已经接入了DeepSeek模型,可能通过API或者某种服务的方式调用,所以实际代码可能需要结合REST API调用或者现有的Java库。 首先,关于RAG部分。在Java中,可能需要连接到一个检索系统,比如Elasticsearch,执行查询,获取相关文档,然后将这些文档作为上下文输入到DeepSeek模型中。这里需要处理检索、上下文拼接等步骤。代码示例可能包括使用Elasticsearch的Java客户端进行查询,然后构造包含上下文的请求体,发送到DeepSeek的API。 然后是LoRA部分。LoRA的实现通常涉及在模型训练时添加适配器层。如果在Java中进行微调,可能需要使用支持LoRA的库,但常见的实现可能更多在Python中。不过,用户可能已经有一个微调后的模型,通过API调用,所以在Java中可能只需要在调用模型时指定使用的LoRA适配器(比如传递一个适配器ID或名称参数)。或者,如果需要在客户端进行实时适配,这可能比较复杂,可能需要加载模型参数,这在Java中可能不太方便。所以可能的代码示例是调用已经部署好的带有LoRA适配器的模型服务,传递适配器参数。 不过,用户可能希望的是在现有系统中集成这两个技术,因此可能需要考虑如何在现有架构中添加检索步骤,以及如何调用带有LoRA适配器的模型。假设DeepSeek的API已经支持LoRA适配器,那么Java代码中可能需要添加相应的参数。 现在需要组织这些思路,给出结构化的回答,包括技术简介、优化场景、代码示例以及注意事项。需要注意代码示例可能需要简化,比如使用伪代码或假设的API调用方式,因为实际实现可能依赖具体的库或服务接口。 另外,用户可能是在银行的技术部门工作,需要确保代码的安全性和高效性,所以可能需要提到相关的最佳实践,比如缓存检索结果、微调时的数据隐私保护等。同时,可能要考虑性能问题,比如检索系统的响应时间,模型调用的延迟等。 总结一下,回答的结构应该是: 1. RAG和LoRA的简介及其在银行系统中的优化场景。 2. RAG的Java代码示例,包括检索部分和模型调用。 3. LoRA的Java代码示例,可能涉及调用带有适配器参数的模型API。 4. 注意事项,包括性能、安全、数据隐私等。 5. 结语,总结好处。 在编写代码示例时,可能需要假设使用某些库或框架,比如Elasticsearch的Java客户端,以及HTTP客户端发送请求到模型API。同时,需要确保代码示例简洁,符合Java的语法规范,并且适当添加注释。 最后,需要验证这些思路是否正确,是否有遗漏的关键点,比如RAG中上下文如何拼接,是否截断,如何处理检索失败的情况,或者LoRA适配器的具体调用方式等。可能需要进一步明确用户的具体需求,但根据问题描述,用户可能希望一个高层次的示例,所以保持代码示例的简洁和示范性是关键。</think>在银行系统中结合RAGLoRA技术可显著提升AI模型的精准度和专业性。以下为技术简介及Java接入示例: --- ### **一、技术价值场景** 1. **RAG(检索增强生成)** - **作用**:实时检索知识库补充上下文(如产品条款/风控规则) - **银行场景**:客户咨询应答、合规审查、风险预警 2. **LoRA适配微调)** - **作用**:成本微调模型适配专业任务(参数更新量<1%) - **银行场景**:信贷报告生成、交易数据分析、个性化推荐 --- ### **二、Java代码实现示例** #### **1. RAG模块实现** ```java // 伪代码需替换实际SDK调用 public class RagService { // 检索知识库(示例:Elasticsearch) public List<Document> retrieveRelevantDocs(String query) { RestClient client = RestClient.builder( new HttpHost("es-host", 9200, "http")).build(); Request request = new Request("GET", "/knowledge_base/_search"); request.setJsonEntity("{ \"query\": { \"match\": { \"content\": \"" + query + "\" } } }"); Response response = client.performRequest(request); return parseDocuments(response.getEntity().getContent()); } // 拼接上下文调用DeepSeek public String generateWithRAG(String userQuery) { List<Document> docs = retrieveRelevantDocs(userQuery); String context = docs.stream().map(Document::getText).collect(Collectors.joining("\n")); String prompt = "基于以下信息回答问题:\n" + context + "\n\n问题:" + userQuery; return DeepSeekClient.generate(prompt); // 假设已有模型调用封装 } } ``` #### **2. LoRA适配调用** ```java // 假设模型服务支持LoRA适配器切换 public class LoraAdapterService { public String generateWithLora(String input, String adapterId) { JsonObject requestBody = new JsonObject(); requestBody.addProperty("input", input); requestBody.addProperty("adapter_id", adapterId); // 指定业务适配器(如loan_risk_v1) HttpResponse response = Unirest.post("https://api.deepseek.com/v1/generate")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值