堆球问题,开普勒猜想(格密码相关)

文章探讨了堆球问题,即寻找相同大小球体的最大密度填充方式。从2D的杜厄定理到3D的开普勒猜想,再到8D和24D的最新成果,展示了数学家们如何逐步解决这一难题。开普勒猜想最终由黑尔斯证明,而Viazovska的工作在高维空间取得了突破。堆球理论不仅在纯数学领域有重要意义,还与数论、密码学等领域相关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一. 介绍

二. 历史进展分析

三.2维下的堆球问题

四. 3维下的堆球问题

五. 8维与24维下的堆球问题

总结


一. 介绍

堆球问题又叫堆球理论、最密堆积、球填充,英文为The Theory Of Sphere Packings。

堆球问题的本质就是填充一堆大小相同的球。要求这些球是刚球,互相之间不能重叠,寻找其最大的密度。关于该密度,简单给一个解释,假设有一个边长为a的立方体的箱子,最大可以放n个体积为v的小球,那么堆球的最大密度即为:

lim_{a\to \infty}\frac{nv}{a^3}

备注:很明显该处例子为三维情况,还可以是四维、五维、······(可以思考下高维下球变成?立方体变成?)。三维寻找最高的堆球密度又被称之为开普勒猜想。

 

二. 历史进展分析

1591年,Thomas Harriot 出版了一本关于各种堆叠问题的研究,并曾最早发展出原子论;

1611年,Johannes Kepler(开普勒)在一篇讲雪花的拉丁语论文中发散出三维下堆球问题的密度上限,但并未给出证明,这便是开普勒猜想。

1831年,高斯证明若球在规则格中进行排列(类似现如今格密码的格点),则开普勒猜想是正确的。这也表明任何反证法都需要寻找不规则的排列方式,实际上,当装球的空间不够大时,确实存在某些不规则排列法密度高于开普勒猜想;

1900年,开普勒猜想被列为希尔伯特的23个问题中的第18个;

1953年,László Fejes Tóth证明任何排列法密度的问题,都可变为有限量的计算过程。这表明至少在原则上,通过穷举法可证明堆球理论的上界;

1958年,英国数学家找到三维空间里任何可能得装球方法上界为78%。我们的目标是将该上界不断缩小,尽量逼近理论上界74%。

1992年,黑尔斯认为可通过一个有着150个变量的方程式的最小值,来找出任何可能装球排法的最大密度。若要寻找每种情况的下界,则需要解超过十万个线性规划问题。

1993年,向武义宣传自己借由几何的方法证明了开普勒猜想,但该证明其实不完善(其实就是不太正确);

1998年,黑尔斯利用3GB的电脑文案证明,以及250页的注解,宣布证明了开普勒猜想。《数学年报》相关裁判员嘉伯‧费耶斯‧托特利用三年时间,确定该证明99%的可能性正确,因为不能完全确定所有电脑计算的正确性;

2015年,黑尔斯和21位作者共同发表了“开普勒猜想的形式化证明”。该论文借助HOL等自动证明检验软件来确认其正确性的证明,来移出所有剩余的、和证明有效性相关的不确定成分。

2022年,Viazovska因为8维空间和24维空间的堆球工作荣获Fields奖。

三.2维下的堆球问题

杜厄定理是在1890年提出的,该定理表明正六边形排列法(每个球旁边都围着六颗球的排列法)是平面上密度最高的堆球法。

设圆的半径为r,则正六边形的边长为2r,不难运算该正六边形的面积为:

6\sqrt3 r^2

该正六边型内包含3个完整的球(把残缺的球进行拼接),所以总球的面积为:

3\pi r^2

所以,密度为:

\frac{\pi}{2\sqrt3}\approx 91%

黑尔斯在1999年也曾证明出一个相关的六角蜂巢猜想(若要将二维平面分割成彼此大小相同的区块,则最有效的方法是将之分成由正六边形组成的区块。

四. 3维下的堆球问题

开普勒猜想指出,在三维空间中,堆球的最大密度为:

\frac{\pi}{\sqrt{18}}

 

五. 8维与24维下的堆球问题

由英国数学家John Leech在1960年确定,并把该结构称为利奇晶格。2016年,乌克兰数学家Maryna Sergiivna Viazovska将该结果推广到球体填充问题,得出最高密度,8维约3.6%,24维约0.005%。

总结

维度越多,球体填充密度会越来越低,最后无限趋向于0 。

堆球理论历经牛顿、高斯、希尔布特、闵可夫斯基、黑尔斯和Viazovska的研究与推动,堆球理论已经发展成为数论、代数、几何和组合交叉领域的一个重要分支。该理论还可以被应用于格密码,尤其是由Shor, Ajtai, Pipher等人进行的抗量子攻击密码体系研究。

### 实现开普勒历法计算 对于开普勒的历法计算,在C++中的实现主要依赖于天文学和物理学原理,特别是轨道力学以及时间测量方法。虽然提供的参考资料并未直接涉及此主题,但可以借鉴其他领域内的开发思路。 #### 定义基本参数 首先定义一些必要的常量和变量用于描述行星运动特性: ```cpp const double PI = 3.141592653589793; double semiMajorAxis; // 半长轴 (AU) double eccentricity; // 偏心率 double inclination; // 轨道倾角 (radians) // ... 更多轨道要素 ... ``` 这些参数通常可以从天文观测数据中得到,并作为输入传递给算法[^1]。 #### 计算真近点角 通过求解Kepler方程来确定行星在其椭圆轨道上的位置。这涉及到迭代过程以找到满足特定条件的角度值v(即真近点角),该角度决定了行星相对于其近日点的位置。 ```cpp double solve_keplers_equation(double M, double e) { const int max_iterations = 1000; const double tolerance = 1e-8; double E = M; // 初始猜测为平均近点角M for(int i=0;i<max_iterations;++i){ double deltaE = (E - e * sin(E) - M)/(1-e*cos(E)); if(abs(deltaE)<tolerance)return E-deltaE; E -=deltaE; } throw std::runtime_error("Failed to converge"); } ``` 这里采用牛顿拉夫森方法解决Kepler方程,其中`M`代表平近点角而`e`则是偏心率。 #### 时间转换函数 为了将地标准时间映射到目标星体的时间体系下,需要建立两者之间关系模型。考虑到不同星可能拥有独特的自转周期T_rot与公转周期T_orbital,因此有必要引入适当的比例因子来进行调整。 ```cpp struct TimeConversionFactors{ double seconds_per_day_on_earth; double days_in_year_of_planet; }; TimeConversionFactors calculate_time_conversion_factors(){ struct TimeConversionFactors factors{}; // Example values based on Earth-like planet assumptions. factors.seconds_per_day_on_earth = 86400.; factors.days_in_year_of_planet = 365.25 ; return factors; } int convert_seconds_to_local_days(double totalSeconds, TimeConversionFactors& conversion){ return static_cast<int>(totalSeconds /conversion.seconds_per_day_on_earth); } ``` 上述代码片段展示了如何基于已知信息设定时间和日期之间的对应规则。 #### 结合以上组件完成完整的日历系统设计 最后一步就是把这些部分组合起来形成一个能够处理各种查询请求的日历类或者模块。可以根据实际需求进一步扩展功能,比如支持闰年判断、节日安排等功能。 ```cpp class CalendarSystem { public: void initialize(/* parameters */){/*...*/} Date get_current_date(){/*...*/return date;} private: Date date; }; ``` 这样就构成了一个基础框架用来模拟并操作虚拟世界里的计时机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唠嗑!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值