戴德金定理-我自己做的中文翻译第13页

这篇内容探讨了实数系统R中通过变量x的变化产生的分割(δ1, δ2)和(B1, B2),定义了x的上限α和下限值β。作者证明了当α=β时,存在一种连续性,即对于任意小的正数ϵ,x最终会无限接近于极限值α。这个讨论揭示了连续性法则与无穷小分析之间的紧密联系。
摘要由CSDN通过智能技术生成

---------------------原文第13页-------------------
那么必然存在一个确定的数α产生了实数系统R的这个分割(δ1,δ2),我称这个α为x的上限,
它总是有限的。类似的方式,作为变量x的变化的结果,系统IR(这里用IR表示实数域)的第
二 个 分 割 ( B 1 , B 2 ) 产 生 了 。 在 x 变 化 过 程 中 , 最 终 比 x 小 的 那 些 数 β 1 ( 例 如 , 二个分割(B_{1},B_{2} )产生了。在x变化过程中,最终比x小的那些数β_{1}(例如, B1B2)xxβ1(,
a − δ ) 分 配 给 B 1 , 每 个 其 他 的 数 β 2 , 分 配 给 B 2 , 有 这 样 的 特 性 : x 永 远 不 会 最 a−δ)分配给B_{1},每个其他的数β_{2},分配给B_{2},有这样的特性:x永远不会最 aδ)B1β2B2,x
终 大 于 这 些 β 2 ; 因 此 , x 无 穷 多 次 变 得 小 于 β 2 , 产 生 这 个 分 割 的 β 我 称 之 为 终大于这些β2;因此,x无穷多次变得小于β2,产生这个分割的β我称之为 β2xβ2β
x的下限值。α和β有这样的特征:若ϵ是任意小的正数,最终会有x<α+ϵ和x>β−ϵ而不会
发 生 最 终 x < α − ϵ 和 x > β + ϵ ( 译 注 : 因 为 α − ϵ 属 于 △ 1 , 若 最 终 x < α − ϵ , 发生最终x<α−ϵ和x>β+ϵ(译注:因为α−ϵ属于△_{1},若最终x<α−ϵ, x<αϵx>β+ϵαϵ1x<αϵ
则α−ϵ属于 △ 2 △_{2} 2,矛盾;β+ϵ属于 B 2 B_{2} B2,若x最终>β+ϵ,则β+ϵ属于 B 1 B_{1} B1,矛盾)。这样就只有
两种可能,若α和β是两个不相同的数,那么就只能是α>β,因为 α 2 \alpha_{2} α2持续> β 1 β_{1} β1;变量x会
左右摇摆(根据前述,“不会发生最终x<α−ϵ和x>β+ϵ”,而β+ϵ和α−ϵ的距离为α-β-2ϵ),
不管这个过程如何进行,最终会出现x的变动值超过(α−β)−2ϵ。这与我一开始的假设矛盾。
这样就只剩下最后一种情况,α=β,而且我们已经发现,不管任意指定的ϵ多么
小,我们最终总能得到x<α+ϵ和x>β−ϵ ,x靠近极限值α。证毕。
这些例子足以表明连续性法则和无穷小分析之间的联系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值