MVG读书笔记——几何变换

德国著名数学家Felix Klein在他的Erlangen纲领中提出:“几何就是研究变换中的不变性的学科。”事实上,几何变换在几何的研究中占有重要地位。也是图形学应用的基础。下面我们就对常用的几何变换进行介绍:

欧氏变换

提到几何变换,最先想到的就是图形的平移和旋转,图形的平移和旋转统称为图形的欧氏变换,一个典型的欧氏变换如下图:
Euclidean transformation
可以看到,从左边的正方形变成右边的正方形分为两步。一是将它沿着某方向进行平移。这一步可以用一个向量t = [x,y]T 来进行表示。t表示的平移的方向和长度。二是将它绕中心旋转一定的角度 α 。这一步可以用一个矩阵

R=[cosαsinαsinαcosα]

来表示。

由此,左边正方形上一点x和右边正方向上一点 x 满足关系 x=Rx+t

使用齐次坐标,我们可以将R和t合成一个3X3的矩阵H来简化运算。

H=[R0t1]

H又称为单应性矩阵。欧氏变换在变换前后保证了线段长度的不变性。

单应矩阵

事实上,对于任意的一种几何变换,我们都可以找到一个矩阵,使得变换前后的对应点 x,x 满足 x=Hx

同样的,对于变换前后的两幅图像,我们可以通过取多对对应点的坐标,得到它们的单应矩阵H,这在图形学和计算机视觉的很多方面都用应用。

由于 xx 都是齐次坐标表示,由上一节我们知道(x,y,1)和(2x,2y,2)表示同一个点。因此对单应矩阵乘一个系数k不会改变变换关系。即对任意 kR,k0 ,kH与H是等价的。对3X3的平面单应矩阵,它的自由度为8。

显然,H是一个可逆矩阵,对H求逆得到了H的逆变换,即 x=H1x

同时可以看到由于采用了齐次坐标,对逆变换的求解也大大的简化了。以欧氏变换为例。由于 x=Rx+t ,有 x=R1(xt)=R1xR1t ,由此得到的逆变换为 R=R1,t=R1t 。这就使得计算不是那么的统一。

其他的几种变换

其他的几种变换包括相似变换,仿射变换,射影变换。其中相似变换就是在欧氏变换的基础上增加了对图形的缩放。一个典型的相似变换如下:
similarity transformation
设缩放系数为s,则它的单应矩阵为

H=[sR0t1]
显然,相似变换失去了线段长度的不变性,但是还保留着线段间角度的不变性。欧氏变换可以看作它在s=1时的一个特例。

对于剩下的两种变换,我们将在后面一篇博客进行介绍。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值