人工智能教程 - 学科基础课程2.6 - 机器学习导论 13.K-Means优化目标,随机初始化,选取聚类数量

本文介绍了K-Means聚类算法的优化目标,强调了优化目标在调试算法和避免局部最优解中的作用。随机初始化是解决K-Means局部最优问题的一种策略,通常通过多次初始化寻找更好的簇。此外,文章讨论了选取聚类数量的挑战,推荐使用肘部法则作为确定K值的一种方法,但也指出在某些情况下,K值的选择可能需要结合业务需求来决定。
摘要由CSDN通过智能技术生成

K-Means优化目标

clustering optimization objective
优化目标函数有两个目的:
  1. 可以对学习算法进行调试,确保 K-Means 运行正确
  2. 运用K-Means 优化目标可以找到更好的簇,并避免局部最优解,从而找到全局最优。

在这里插入图片描述

这里的代价函数也叫失真函数 distortion function

随机初始化

多次的初始化可以更好的避开局部最优

在这里插入图片描述

K-Means存在一个问题。停留在一个局部最优或全局最优处取决于初始化的情况。

局部最优的情况:

在这里插入图片描述

解决方案:多次进行随机初始化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值