目录
微积分基本公式
定理1
设 f(x) 在[a,b]上连续,则在[a,b]上 有
定理2
设 f(x) 在[a,b]上连续,则 在[a,b]上 是 f (x)的一个原函数
辅助理解
这个求导是对于x求导,如果积分的下限为一个常数a,那么求导之后必定为0,所以不需要管这部分的结果,
而对于上限是关于x的,求得它导数之前进行了一次积分相互抵消,所以结果就是原函数;如果上限是关于x的函数,求得的也会是关于这个函数的导数,利用F'x = F'u * U'x可得复合的结果
而对于下限如果是关于x的,(此时上限考虑为常数),那么结果实际上只用添一个负号就可以转化为变上限的形式;
所以可以推导出一般的公式:
这个公式也能解释,如果上限或下限为常数时(与求导变量无关时),结果只会有一项
例题
提示:这题需要利用等价无穷小的多次替换,结合洛必达法则(这时候由于有积分,可以利用上面的定理公式进行求解)
定理3(牛顿——莱布尼兹公式)
设F(x)为连续函数f(x)在[a,b]上的一个原函数,则
证明积分中值定理
求证:若 f (x) 在 [a,b]上连续,则