考研数学——高数:定积分

本文详细讲解了高数中的定积分概念,包括微积分基本公式、定理和牛顿-莱布尼兹公式。通过证明积分中值定理,并探讨定积分在几何上的应用,如求平面图形的面积、旋转体的体积和曲线的弧长。文章通过例题加深读者对定积分的理解和应用。
摘要由CSDN通过智能技术生成

目录

微积分基本公式

定理1

定理2

辅助理解

例题

定理3(牛顿——莱布尼兹公式)

证明积分中值定理

定积分在几何上的应用

方法

一、平面图形的面积

求曲线所围面积①        

求曲线所围面积②        

求曲线所围面积③          

求曲线所围面积④

二、体积

1.旋转体的体积

2.平行截面积已知的立体的体积

3.平面曲线的弧长


微积分基本公式

定理1

设 f(x) 在[a,b]上连续,则在[a,b]上  \int_{a}^{x}f(t)dt 有 (\int_a^{x}f(t)dt)' = f(x)

定理2

设 f(x) 在[a,b]上连续,则 在[a,b]上 \int_{a}^{x}f(t)dt 是 f (x)的一个原函数

辅助理解

        这个求导是对于x求导,如果积分的下限为一个常数a,那么求导之后必定为0,所以不需要管这部分的结果,

        而对于上限是关于x的,求得它导数之前进行了一次积分相互抵消,所以结果就是原函数;如果上限是关于x的函数,求得的也会是关于这个函数的导数,利用F'x = F'u * U'x可得复合的结果

        而对于下限如果是关于x的,(此时上限考虑为常数),那么结果实际上只用添一个负号就可以转化为变上限的形式;

         所以可以推导出一般的公式:                                                                                                    (\int_{\varphi (x)}^{\psi (x)}f(t)dt )' = f(\psi (x))*\psi '(x) - f(\varphi (x))*\varphi' (x)

        这个公式也能解释,如果上限或下限为常数时(与求导变量无关时),结果只会有一项

例题

(1)\lim_{x\rightarrow 0}\frac{\int_{0}^{sin^2x}ln(1+t)dt}{x\sqrt{x^3-1}}

提示:这题需要利用等价无穷小的多次替换,结合洛必达法则(这时候由于有积分,可以利用上面的定理公式进行求解)

定理3(牛顿——莱布尼兹公式)

设F(x)为连续函数f(x)在[a,b]上的一个原函数,则

        \int_{a}^{b}f(x)dx = F(b)-F(a)

证明积分中值定理

求证:若 f (x) 在 [a,b]上连续,则        \int_{a}^{b}f(x)dx = f(\xi )(b-a),a<\xi<b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值