【人工智能之大模型】列举有哪些常见的优化LLMs输出的技术?
【人工智能之大模型】列举有哪些常见的优化LLMs输出的技术?
文章目录
大语言模型(LLMs)输出优化的常见技术
随着 GPT-4、Claude 3、Gemini 1.5、Mistral 等大型语言模型的发展,优化 LLMs 输出的技术至关重要,以提升 准确性、连贯性、多样性、控制性,并降低 幻觉(Hallucination) 和 偏见(Bias)。以下是当前常见的优化技术,并结合发展趋势展望未来方向。
1. 解码策略优化(Decoding Strategies)
LLMs 生成文本的方式直接影响输出质量,常见的解码策略包括:
(1) 贪心搜索(Greedy Search)
- 每步都选择最高概率的 token,简单但容易导致 文本单调,缺乏多样性。
- 适用于 封闭式任务(如文本分类)。
(2) Beam Search(束搜索)
- 维护多个可能的生成路径(beam width),最终选择最优路径。
- 可提高 连贯性,但仍可能导致 重复 和 幻觉。
- 常用于 机器翻译(如 Google Translate)。
(3) Top-k 采样(Top-k Sampling)
- 限制每个 token 选择时仅从 前 k 个最高概率的词 采样,避免低概率词。
- 适用于创意性文本(如故事生成)。
(4) Top-p 采样(Nucleus Sampling)
- 选择累计概率达到 p(如 0.9)的 动态子集,使得模型在高概率区域自由采样,增强 多样性。 GPT-3/4 默认采用。
(5) 温度控制(Temperature Scaling)
- 通过调整 温度参数(T) 来控制输出随机性:T → 0:接近 Greedy Search(更确定性)。T → 1:更随机,更适合创意生成。
- 适用于 多种任务,如诗歌创作、对话生成。
✅ 发展趋势:未来可能结合 自适应解码策