【人工智能之大模型】列举有哪些常见的优化LLMs输出的技术?

【人工智能之大模型】列举有哪些常见的优化LLMs输出的技术?

【人工智能之大模型】列举有哪些常见的优化LLMs输出的技术?



大语言模型(LLMs)输出优化的常见技术

随着 GPT-4、Claude 3、Gemini 1.5、Mistral 等大型语言模型的发展,优化 LLMs 输出的技术至关重要,以提升 准确性、连贯性、多样性、控制性,并降低 幻觉(Hallucination) 和 偏见(Bias)。以下是当前常见的优化技术,并结合发展趋势展望未来方向。

1. 解码策略优化(Decoding Strategies)

LLMs 生成文本的方式直接影响输出质量,常见的解码策略包括

(1) 贪心搜索(Greedy Search)

  • 每步都选择最高概率的 token,简单但容易导致 文本单调,缺乏多样性。
  • 适用于 封闭式任务(如文本分类)。

(2) Beam Search(束搜索)

  • 维护多个可能的生成路径(beam width),最终选择最优路径。
  • 可提高 连贯性,但仍可能导致 重复 和 幻觉。
  • 常用于 机器翻译(如 Google Translate)。

(3) Top-k 采样(Top-k Sampling)

  • 限制每个 token 选择时仅从 前 k 个最高概率的词 采样,避免低概率词。
  • 适用于创意性文本(如故事生成)。

(4) Top-p 采样(Nucleus Sampling)

  • 选择累计概率达到 p(如 0.9)的 动态子集,使得模型在高概率区域自由采样,增强 多样性。 GPT-3/4 默认采用。

(5) 温度控制(Temperature Scaling)

  • 通过调整 温度参数(T) 来控制输出随机性:T → 0:接近 Greedy Search(更确定性)。T → 1:更随机,更适合创意生成。
  • 适用于 多种任务,如诗歌创作、对话生成。

✅ 发展趋势:未来可能结合 自适应解码策

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值