4. 数学建模竞赛的思维过程
3.数学建模竞赛的实践过程
(1)问题的分析
数学建模的第一步:明确问题;分析条件和数据.
通过对问题的分析,明确问题所给的信息:
建模的目的是什么?需要解决的问题是什么?
解决问题的思路是什么?
需要做些什么工作?
可以用什么知识和方法?
问题有什么特点、限制条件?
工作的重点、难点、要点是什么?
开展工作的程序是什么?如何分工、合作?
从条件和数据可以得到什么信息?
数据的来源是否可靠?
所给条件和数据有什么意义和作用?
哪些条件是本质的?
哪些条件中可变动的?
是否需要适当补充一些条件和数据?
(2)模型的建立
明确建模目的:
描述或解释现实世界的现象;预报事件是否会发生,或如何发展;优化管理、决策或控制等。
给出合理假设:
关于是否包含某些因素的假设;关于条件相对强弱的假设;关于各因素影响相对大小的假设;关于模型适用范围的假设。