推荐文章:高效且稳健的无组织点云边缘提取算法

推荐文章:高效且稳健的无组织点云边缘提取算法

Edge_ExtractionFast and robust algorithm to extract edges in unorganized point clouds项目地址:https://gitcode.com/gh_mirrors/ed/Edge_Extraction

在三维重建和计算机视觉领域,点云数据处理是不可或缺的一环。Edge_Extraction 是一个开源项目,提供了快速且鲁棒的边缘检测算法,适用于无组织的点云数据。这个项目的灵感来源于[Dena Bazazian, Josep R Casas, Javier Ruiz-Hidalgo]在DICTA2015会议上的研究论文,并提供了Python和C++两个版本的实现代码。

项目介绍

Edge_Extraction 包含两个主要的源代码文件:Difference_Eigenvalues.pyDifference_Eigenvalues.cpp。前者基于Python 3和pyntcloud库,后者则为标准的C++实现。此外,项目还提供了一个用于计算边缘检测精度的F1Score-Eigenvalues.cpp工具以及一个自动生成的人工点云数据集。

技术分析

该算法的核心在于利用特征值差分来识别点云中的边缘。在无组织点云中,边缘通常表示局部几何形状的变化,通过计算相邻点的特征向量差异,可以有效地检测这些变化。这种方法不仅能够处理大规模数据,而且对噪声有良好的抗干扰性。

应用场景

  • 建筑信息模型(BIM):在建筑物的数字化过程中,边缘信息对于理解和重构三维结构至关重要。
  • 自动驾驶:点云边缘检测可以帮助车辆感知环境,特别是在低光照或恶劣天气条件下。
  • 文化遗产保护:通过对文物进行三维扫描,提取边缘可帮助细节恢复和破损部分的修复。
  • 机器人导航:边缘信息有助于机器人理解其周围环境,提高定位和路径规划准确性。

项目特点

  1. 跨平台:支持Python和C++两种语言,易于集成到现有项目中。
  2. 效率高:优化的算法设计,即使面对大规模点云数据也能快速完成边缘提取。
  3. 鲁棒性强:针对无组织点云和噪声设计,保证了结果的稳定性。
  4. 数据集丰富:包括人工生成的点云和对应的地面实测数据,方便评估和测试算法性能。
  5. 易用性:依赖于流行的pyntcloud库,Python版本的代码易于理解和执行。

如果你正在寻找一种可靠的方法来处理点云数据并提取关键的边缘信息,那么Edge_Extraction 将是你理想的选择。别忘了,在使用时引用原始论文以支持开发者的工作。

@InProceedings{Bazazian15,
  author    = {Bazazian, Dena and Casas, Josep R and Ruiz-Hidalgo, Javier},
  title     = {Fast and Robust Edge Extraction in Unorganized Point Clouds},
  booktitle = { Proceeding of International Confere on Digital Image Computing: Techniques and Applications (DICTA)},
  publisher = {IEEE},
  pages     = {1--8},
  year      = {2015}
}

Edge_ExtractionFast and robust algorithm to extract edges in unorganized point clouds项目地址:https://gitcode.com/gh_mirrors/ed/Edge_Extraction

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋玥多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值