ATAC-seq 和 DNase-seq 数据处理管道指南
项目介绍
本项目为ATAC-seq(Accessible Chromatin Assay for Regulatory Elements Sequencing)和DNase-seq(Deoxyribonuclease sequencing)数据自动化端到端的质量控制和处理设计的管道。它支持在具有作业提交引擎的计算集群或独立机器上运行,并利用了并行化或分布式计算。自2018年6月起被标记为废弃,推荐更新至基于WDL的管道ENCODE-DCC/atac-seq-pipeline。但此旧版仍可作为参考,适用于从原始FASTQ文件开始直至峰值调用和信号轨迹生成的全流程,或从中间阶段开始执行。
项目快速启动
获取源码
首先,克隆项目库时记得加上--recursive
以正确获取子模块:
git clone https://github.com/kundajelab/atac_dnase_pipelines.git --recursive
环境准备
安装必要的软件和依赖项,包括Java 8、Conda、以及BigDataScript等。创建一个Miniconda3环境并安装特定的依赖。以下仅示例Java安装步骤,完整过程应参照项目仓库的最新说明。
sudo apt-get install git openjdk-8-jre # 对于Debian/Ubuntu系统
配置Conda环境及安装其他依赖,请依据实际操作系统和个人需求完成相应步骤。
运行基础任务
假设您已经完成了所有必需的设置,典型的管道启动命令需根据实际情况调整,这里提供一个概念性的启动点,具体参数应查阅最新的文档或帮助信息:
bds atac /path/to/your/input/files
请注意,实际使用中需要依据您的数据路径和配置进行修改。
应用案例和最佳实践
- 数据预处理: 开始前,确保对ATAC-seq或DNase-seq的原始数据进行了质量评估,清理可能存在的_adapter_并进行适当的修剪。
- 批处理作业: 在大规模分析多个样本时,合理利用队列系统如SGE或SLURM,通过提交脚本管理批量作业。
- 优化内存使用: 根据系统配置调整BigDataScript的内存参数,以防止运行期间的资源瓶颈。
典型生态项目
虽然本项目本身定义了一套处理流程,其生态环境中的其他相关项目也值得注意,例如ENCODE项目的官方ATAC-seq管道,这是一个进阶版本,采用WDL(Workflow Description Language),更适配于现代的生物信息学工作流管理和分布式计算环境。用户可以根据自己的研究需求选择适用的工具集。
git clone https://github.com/ENCODE-DCC/atac-seq-pipeline.git
对于希望深入整合和扩展ATAC-seq和DNase-seq分析的开发者和研究者,探索这些生态内的工具和框架是十分有益的。
以上概括了ATAC-seq 和 DNase-seq 数据处理管道的基本指导,详细步骤和配置文件的定制需要参考项目仓库的具体文档,确保遵循最新的安装和使用指引。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考