29、基于采样的运动规划方法解析

基于采样的运动规划方法解析

1. 基于采样的运动规划概述

运动规划问题有两种主要解决思路,其中基于采样的运动规划方法避免显式构建障碍物空间 (C_{obs}),而是通过采样方案对构型空间 (C) 进行搜索。该方法借助碰撞检测模块作为“黑盒”,使规划算法独立于特定几何模型,能有效解决涉及大量几何基元的复杂问题。

1.1 完备性概念

对于基于采样的算法,有几种完备性概念:
- 完全完备性 :算法能在有限时间内对任何输入正确报告是否存在解,若存在则返回一个解。组合运动规划方法可达到此要求,但基于采样的规划通常无法实现。
- 分辨率完备性 :确定性方法若能密集采样,在解存在时可在有限时间内找到解;若解不存在,算法可能会无限运行。
- 概率完备性 :基于随机采样的方法,采样具有概率为 1 的密集性,随着采样点增多,找到现有解的概率趋近于 1,但收敛速率通常难以确定。

1.2 各部分内容概述

  • 距离和体积 :多数基于采样的规划算法需要测量 (C) 中两点距离的函数,常涉及度量空间和测度空间概念。
  • 采样理论 :包括随机采样、低分散采样和低差异采样等技术,以生成具有良好性质的样本序列。
  • 碰撞检测 :是基于采样规划的关键组件,有多种碰撞检测算法,可用于确定构型是否发生碰撞。
  • 增量采样与搜索
考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值