子空间学习论文笔记02:Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

本文介绍了一种基于Laplacian Eigenmaps的降维技术,该技术源于机器学习领域的流形学习。通过构建邻接图并设置边权,利用拉普拉斯矩阵的特征向量实现数据降维。与谱聚类思想相似,该方法在计算机视觉中具有应用。论文还探讨了选取邻接图的不同策略及其优缺点,并提到了与Normalized Cuts方法的联系。
摘要由CSDN通过智能技术生成

这篇论文就不像是前面那篇图像分割的论文更像是计算机视觉的论文。这篇论文是属于机器学习领域并且更像于流形学习中的一类。但是基本方法还是很像前面那篇图像分割的论文,都是利用拉普拉斯矩阵来求其特征向量来实现我们降维的目的(也跟谱聚类的思想很类似),这里想简单的说明这篇利用Laplacian Eigenmaps来进行降维的基本算法流程:
降维的基本意思就是:我们现在有x_1,x_2,….,x_k的k个点在空间R_l中(可以简单理解每一个点的维度都是l),然后我们用y_1,y_2,…,y_k的k个点在空间R_m中(y的每一个点的维度都是m)来表示x点
(1)我们要先构建邻接图(也就是邻接矩阵),也就要确定图中的每一个结点应该要和其他哪些点相连。
准则有两个:
1. 判断两个i,j之间的距离 ||xixj||2<ε | | x i − x j | | 2 < ε ,即两点间的距离小于这个阈值就将这两个点相连起来。
这个方法的优点:这种方法有助于得到一个全局最优的图。缺点:这个阈值很难选取。
2. 选取点i周围最近的n个点相连起来,这个方法的优点:免去了选择阈值的困难。缺点:构建出来的图更多是局部最优的图。
(2)我们得到二二相连的信息之后,我们就要知道两个点相连的边权如何设置呀。这样同样给出了两种方法:
1. 借助Heat kernel的知识来计算我们的边权:
如果两个点相连接,则有:

Wij=e||
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值