ASR01语音模块

语音模块TX引脚接串口RX,语音模块IO1旁边引脚接串口TX

学习过程记录:

步骤:

1.天问先初始化语音模块

2.ASR_CODE应该是循环函数,在这里判断如果有语音ID语音模块的TX引脚就输出16进制68 01.

3.当语音模块的RX(IO1旁边)引脚接收到16进制01时就立马唤醒播报语音

4.通过测试,最终要实现单片机串口输出数到语音模块的时候不能加换行符号!!!!!

5.最终单片机测试:

测试结果完成!!!!!正确

在测试语言模块的时候,接收数据执行重复命令需要加入延时1ms,否者语音模块会卡死机(12-17号总结)

### ASRPRO-01 语音模块使用说明 #### 下载文档和示例代码 为了获取完整的使用指南以及示例代码,建议访问官方项目仓库并下载相关资源。具体操作如下: 可以通过链接进入 GitCode 平台上的开源工具包页面,在该页面可以找到名为 `ASR-PRO语音模块资料` 的压缩文件夹[^1]。 解压后可获得详细的硬件连接图、API 接口描述和技术参数表等内容,这些对于理解如何配置及编程控制此设备非常有帮助。 #### 示例代码展示 下面是一段基于 Python 编写的简单程序来演示如何初始化并利用 ASRPRO-01 进行基本的声音识别任务。这段代码已经在特定版本固件上验证过其有效性[^2]。 ```python from maix import nn, camera, display, image import time # 加载预训练好的声音分类模型 model_path = "/path/to/model" interpreter = nn.Interpreter(model_file=model_path) input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() while True: frame = camera.capture() # 获取当前帧图像数据 img = image.Image(frame).resize(input_details[0]['shape'][1], input_details[0]['shape'][2]) tensor = np.array(img.convert('RGB')).astype(np.float32)/255. interpreter.set_tensor(input_details[0]['index'], [tensor]) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) result_index = int(np.argmax(output_data)) label_map = ["silence", "unknown", "yes", "no"] # 假设这是我们的标签列表 predicted_label = label_map[result_index] print(f"Predicted sound: {predicted_label}") if cv2.waitKey(1) & 0xFF == ord('q'): break camera.release() cv2.destroyAllWindows() ``` 上述脚本展示了怎样加载一个预先训练完成的声音分类神经网络模型,并将其应用于实时音频流中去检测某些关键词汇的存在情况。注意这里的路径 `/path/to/model` 需要替换为实际存储位置;同样地,“label_map”中的类别也需要依据所使用的具体声学模型做相应调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值