自动语音识别(ASR)模型全览

以下为截至2024年底主流ASR模型的详细列表,涵盖传统模型、端到端模型、开源框架及商业解决方案,按技术类型分类整理,并标注适用场景:


一、传统混合模型(GMM/HMM、DNN/HMM)
  1. GMM/HMM

    • 公开时间:1980年代
    • 参数量:百万级(依赖状态数)
    • 特点:基于高斯混合模型(GMM)与隐马尔可夫模型(HMM)结合,需手工对齐音素状态。
    • 适用场景:早期电话语音识别(嵌入式设备)、孤立词识别(工业控制终端)。
  2. DNN/HMM

    • 公开时间:2010年(微软首次应用)
    • 参数量:千万级
    • 特点:用深度神经网络(DNN)替代GMM计算音素概率,支持上下文建模。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值