提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1. 基于经验和实验数据的静态估计 2. 自适应估计 2.1 最大似然估计(MLE) 2.1.1 检测概率 ( P d P_d Pd) 的估计 2.1.2 杂波密度 ( κ ( z ) \kappa(z) κ(z)) 的估计 2.2 贝叶斯方法 3. 参数动态估计方法 3.1 基于期望最大化(EM)的动态估计算法 3.1.1 E步骤(Expectation) 3.1.2 M步骤(Maximization) 3.2 使用粒子滤波进行动态估计 3.2.1 建立似然函数 3.2.2 优化过程 3.2.3 EM算法的应用 3.2.4 参数更新 4. 结语 4.1 估计方法的选择 4.2 多参数联合估计与交叉估计问题 4.3 观测数据中目标与杂波的识别问题 在序贯蒙特卡洛概率假设密度(SMC-PHD)滤波器中,检测概率 P d P_d P