- 博客(34)
- 资源 (36)
- 收藏
- 关注
原创 异构电子系统技术集成工具链(STITCHES)赋能美军联合全域作战
本文首先介绍STITCHES的项目背景和工作原理,并阐述了对其进行试验验证的情况。
2025-03-26 12:42:07
111
原创 加油机、运输机等大型机在未来联合全域作战中的地位或将得到质的提升
美军目前装备有大量的大型运输机C-17A与加油机KC-135,美国空军空中机动司令部认为这些运输机和加油机必须联入到网络中,或是用作链接通道,或是用作传感器,或是用作“联合全域指挥与控制”节点。笔者认为,在美军大力发展联合全域作战的背景下,加油机、运输机等大型机在未来联合全域作战中的地位或将得到质的提升,低成本赋能或将成为推进和发展联合全域作战的主流方式。
2025-03-25 15:32:40
80
原创 波音公司计划为KC-46A加油机加装通信吊舱以实现F-22与F-35战斗机的之间的双向数据连通
为了解决美空军F-22的“机间飞行数据链”(IFDL)和F-35的“多功能先进数据链”(MADL)二者不能兼容以影响协同作战的问题,美军在利用U-2侦察机上的开放系统网关来实现F-22与F-35之间的数据共享的基础上,进一步计划为KC-46A加油机加装通信吊舱以实现类似功能。
2025-03-24 10:59:38
77
原创 美军利用MANET技术实现无人作战单元协同作战
本文首先介绍了移动自组织网络 (MANET)以及Wave Relay®波形中继技术,并探讨了波形中继MANET平台在美空军ABMS项目等军事方面的运用情况。
2025-03-23 11:30:32
125
原创 美空军ABMS联合演示试验
美军分别于2019年12月、2020年8底至9月初开展了2次ABMS联合演示试验,并在9月中旬美国印太司令部开展“勇敢盾牌”演习期间同时进行了第3次ABMS演示试验。联合演示试验从最初的少量平台及作战单元参与的小规模演练,提升到多平台、多个作战司令部参与、分散地域的大跨度演练,以及美国本土外的大规模联合演练,以更真实地测试ABMS应对不确定的复杂作战环境下的适应性及有效性。
2025-03-22 08:46:17
219
原创 【深度】JADC2的层级结构以及全域Mesh网络
本文先阐述JADC2的层级结构,明确其与所属分支概念及项目的关系并介绍其主要解决的问题;通过类比工业领域的金字塔结构阐述JADC2后续实现全域Mesh网络后与现阶段基于“黑盒”的一体化方式所具有的本质不同。
2025-03-20 16:17:04
600
原创 一体化防空反导概念内涵阐释
本文从介绍防空与反导作战的差异入手,分析二者融合的必然性,阐述一体化防空反导的内涵特点及需求,并结合美军防空反导装备发展和体系建设的实例阐述一体化防空反导发展的具体措施。
2025-03-17 11:49:15
932
原创 信火一体作战模式运用特点分析及对一体化防空反导能力建设的启示
本文通过分析信火一体作战模式在俄乌战争等现代化战争中的运用,梳理出该作战模式在内涵特征方面展现出的三个新的发展趋势,一是充当火力和信息要素的作战单元种类更加丰富,二是信息运用方面更加凸显异构平台间的数据共享和情报融合,三是在作战环节上更加强调指挥决策的敏捷性和智能化。围绕这三个方面,重点阐述其对我国防空反导能力建设的启示建议。
2025-03-16 22:55:23
1151
原创 俄乌战争中“信火一体”作战模式的运用与启示——以防空反导作战为例
本文聚焦俄乌战争中“信火一体”作战模式在防空反导作战领域的应用,探讨其对雷达兵部队的深远影响。通过剖析俄乌双方在实战中运用该模式的具体案例,揭示其在信息共享、火力协同及智能化决策等方面的特点与优势。在此基础上,分析雷达兵部队在“信火一体”模式下所面临的挑战与机遇,提出强化雷达兵部队数据共享、协同作战能力及智能化水平的能力提升策略,以期为雷达兵部队适应未来信息化战争提供有益参考。
2025-03-15 12:44:28
1074
原创 《A Tutorial on Particle Filters for On-line Nonlinear/Non-Gaussian Bayesian Tracking》学习心得
该论文是一篇关于粒子滤波器在在线非线性/非高斯贝叶斯跟踪中应用的教程。文件由Simon Maskell和Neil Gordon撰写,发表于2001年9月。
2024-03-18 08:30:00
171
原创 《A Second-Order PHD Filter With Mean and Variance in Target Number》学习心得
这篇论文《A Second-Order PHD Filter With Mean and Variance in Target Number》提出了一种新的二阶概率假设密度(PHD)滤波器(SO-PHD),该滤波器在**估计目标数量的一阶矩(即均值)的同时,还传播目标数量的二阶矩(即方差)。与传统的PHD滤波器和势PHD(CPHD)滤波器相比,SO-PHD滤波器在建模选择上更加灵活,且计算成本显著低于CPHD滤波器。
2024-03-17 08:30:00
863
原创 《A Gaussian Mixture PHD Filter for Jump Markov System Models》学习心得
该文是一篇关于高斯混合概率假设密度(PHD)滤波器在跳跃马尔可夫系统模型中的应用的研究论文,由Syed Ahmed Pasha、Ba-Ngu Vo、Hoang Duong Tuan和Wing-Kin Ma撰写,发表于2009年的IEEE航空航天与电子系统会刊上。
2024-03-16 08:30:00
141
1
原创 《A comparison of “clutter-agnostic“ PHD filters》学习心得
该论文是由Ronald Mahler撰写的关于“clutter-agnostic” PHD滤波器的比较研究的论文,发表在2012年SPIE会议论文集中。
2024-03-15 08:30:00
311
1
原创 《Nonlinear Bayesian estimation using Gaussian sum approximations》学习心得
该论文是一篇关于非线性贝叶斯估计(量测噪声背景下)使用高斯和近似的学术论文,由Alspach和Sorenson在1972年发表在IEEE Transactions on Automatic Control上。该博文是我对阅读该文章后的梳理和理解。
2024-03-14 12:49:23
200
1
原创 扩展卡尔曼滤波器的粒子实现
扩展卡尔曼滤波器(Extended Kalman Filter, EKF)的粒子实现是一种将传统的扩展卡尔曼滤波器(EKF)与粒子滤波器(Particle Filter)相结合的方法。EKF是一种处理非线性系统状态估计问题的线性化技术,而粒子滤波器是一种基于蒙特卡洛方法的贝叶罗估计技术。将两者结合的目的是利用EKF的高效计算和粒子滤波器对非线性和非高斯噪声的鲁棒性。
2024-03-12 18:06:21
416
1
原创 检测概率与目标状态相关时的PHD滤波器
当检测概率与目标状态相关时,PHD滤波器的处理方式略有不同,因为这种情况下的不再是一个常数,而是一个关于目标状态的函数。这种情况下,PD(x)表示给定目标状态x时的检测概率。这样的模型更加复杂,因为它需要处理状态依赖的检测概率,但它也能提供更加精确的目标跟踪。
2024-03-04 21:46:28
1228
原创 在PHD滤波器中加标签与标签RFS的区别
在多目标跟踪中,概率假设密度(PHD)滤波器和标签随机有限集(Labeled RFS)滤波器都是用于处理多目标检测和跟踪的工具,它们都基于随机有限集(RFS)理论。然而,将标签信息加入PHD滤波过程与标签RFS滤波器在概念和实现上存在一定的联系和区别。
2024-02-28 23:07:32
539
原创 检测概率与目标状态相关时的PHD滤波器
当检测概率与目标状态相关时,PHD滤波器的处理方式略有不同,因为这种情况下的不再是一个常数,而是一个关于目标状态的函数。这样的模型更加复杂,因为它需要处理状态依赖的检测概率,但它也能提供更加精确的目标跟踪。
2024-02-27 18:26:44
927
原创 低检测概率条件下GM-PHD滤波器设计思路
在低检测概率条件下,基于高斯混合概率假设密度(GM-PHD)滤波的实现方式需要特别处理,以适应检测概率低的环境。GM-PHD滤波器是一种针对多目标跟踪的贝叶斯滤波器,它通过使用高斯混合模型来近似概率假设密度函数。低检测概率意味着目标被雷达或传感器检测到的概率较低,这通常会导致目标丢失和虚假目标的增加。为了适应这一挑战,可以采用几种策略来改进GM-PHD滤波器的性能。
2024-02-26 15:54:54
1026
3
原创 PHD滤波器中杂波密度未知与杂波密度时变的问题
使用PHD(概率假设密度)滤波器进行多目标跟踪时,杂波密度未知和杂波密度动态变化是两种不同类型的问题,处理这两种问题的方法可能有些区别,因为PHD滤波器的设计需要考虑到这些因素。
2024-02-25 21:06:43
981
1
原创 PHD滤波器中检测概率未知与检测概率时变的问题
"检测概率未知"与"检测概率时变"在PHD(概率假设密度)滤波器中描绘了两种不同的情境。它们都表现了实际环境中的不确定性,但分别需要不同的滤波和优化技术来处理。
2024-02-24 22:26:52
955
原创 PHD与MHT或JPDA的结合使用
在高杂波密度环境中,将多假设跟踪(MHT)或联合概率数据关联(JPDA)与概率假设密度(PHD)滤波器结合使用,可以有效提高目标跟踪的准确性和鲁棒性。这种结合利用了MHT或JPDA在数据关联方面的优势,以及PHD滤波器在处理多目标跟踪和杂波管理方面的能力。
2024-02-23 09:08:22
879
原创 高杂波密度下PHD滤波器设计
在高杂波密度情况下,概率假设密度(PHD)滤波器面临的主要问题主要集中在如何有效区分目标和杂波的观测,以及如何在计算资源有限的情况下保持较高的跟踪性能。这些挑战对于保持滤波器的准确性和实用性至关重要
2024-02-22 16:14:24
975
1
原创 PHD滤波器及其变体的本质
概率假设密度(PHD)滤波器及其变体,包括扩展PHD滤波器(ePHD)、高斯混合PHD滤波器(GM-PHD)和粒子PHD滤波器(Particle-PHD),是为了解决多目标跟踪(Multi-Target Tracking, MTT)问题而开发的。这些算法的本质在于通过直接处理目标分布的随机性质来估计场景中的目标数量及其状态,而不是传统方法中的逐个跟踪目标。下面简要介绍各种PHD滤波器变体的本质和它们解决的特定问题。
2024-02-21 15:40:54
2475
原创 GM-PHD递推过程及其物理意义
高斯混合概率假设密度(GM-PHD)滤波器是PHD滤波器的一种实现,它通过使用高斯混合模型来近似目标的强度分布。GM-PHD滤波器的递推过程主要包括预测(Prediction)和更新(Update)两个步骤,下面结合公式详细阐述这两个步骤及其参数的物理意义。
2024-02-20 21:13:36
1218
2
原创 检测概率和杂波密度未知条件下SMC-PHD滤波器设计
在目标跟踪领域,概率假设密度(PHD)滤波器是一种处理多目标跟踪问题的有效方法,它通过维护目标分布的一阶矩(即密度)来估计目标的数量和状态。序列蒙特卡洛(SMC)方法,也称为粒子滤波,是实现PHD滤波的一种常见技术,尤其是在处理非线性和非高斯问题时。SMC-PHD滤波器结合了粒子滤波的灵活性和PHD滤波器的多目标跟踪能力。
2024-02-19 09:03:28
1701
1
原创 检测概率未知条件下GM-PHD滤波器设计
当检测概率未知时,基于高斯混合概率假设密度(GM-PHD)滤波器的递推过程需要进行一些调整。GM-PHD滤波器是一种用于多目标跟踪的算法,它利用高斯混合模型来近似目标在状态空间中的分布。
2024-02-18 11:25:33
977
原创 SMC-PHD框架下检测概率和杂波密度的估计方法
在序贯蒙特卡洛概率假设密度(SMC-PHD)滤波器中,检测概率和杂波密度往往是未知或时变的,因而在多目标跟踪过程中对二者的估计是非常重要的,因为这两个参数直接影响到滤波器的性能。具体的估计方法取决于应用场景、可用数据以及所需的准确度。以下是一些常见的方法和相应的解决步骤。
2024-02-17 00:10:39
1377
1
原创 概率检测和滤波的数学基础
描述概率检测和滤波器的公式和方程式涉及到多个领域,包括概率论、统计学、信号处理和自动控制理论。以下是一些关键概念和相应的数学表达式
2024-02-16 15:34:19
819
1
原创 PHD递推过程及其物理意义(概念模型)
概率假设密度(PHD)滤波器是一种用于多目标跟踪的方法,基于随机有限集(RFS)理论。PHD滤波器通过维护目标分布的强度函数来避免显式数据关联,从而简化计算。其操作可以分为两个主要步骤:预测(Prediction)和更新(Update),下面结合公式解释这两个步骤及其参数的物理意义。
2024-02-15 10:06:00
1245
1
Twostep_spotlight.zip
2019-12-22
Extended Chirp Scaling(有相应参考文献).zip
2019-12-22
GM-PHD的模块化实现,对代码进行了很大程度的优化,使其具有了明显的模块化,便于对比和替换,主函数非常简洁
2024-02-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人