建设一个私有知识库问答网站

本文档介绍了如何使用Flask、向量数据库Chromadb和Langchain组件创建一个私有知识库问答网站。通过将内部知识文档编码并存储在数据库中,模型能够根据用户问题查询相关文档内容作为上下文进行回答。改造包括安装向量数据库、网站界面更新和后台应用改造,实现了根据用户需求开启或关闭知识库功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一篇博客中,我用Flask和开源大模型建立了一个智能问答网站用Flask打造一个大模型智能问答WEB网站-CSDN博客,可以根据用户的问题来进行回答。但是模型能回答的知识受限于其训练数据,如果我们有一些私有的知识想让模型回答,模型是无法给出答案的。为此我们可以让模型根据我们的私有文档数据,来进行阅读理解,从而对用户提出的问题找到对应的答案。

为了建立一个私有知识库网站,我们需要用到向量数据库来对文档内容进行编码,然后存储到数据库中,当用户提出问题时,通过查询数据库,我们可以获取到和用户问题相似性最高的文档内容,然后把文档内容作为上下文提供给模型,使得模型根据这个信息来进行回复。

以下是建立私有知识库后的效果:

chatbot_knowledgebase

从以上演示我们可以看到,当我们打开知识库的开关后,系统能够正确的回复用户的问题,而不打开知识库,系统无法正确回答,只能一本正经地“胡说八道”。

现在我介绍一下如何实现这个知识库问答系统。

安装向量数据库

这里我选择Chromadb作为我的向量数据库,在官网上可以看到这个数据库的介绍和使用方法,非常简便。除了Chromadb之外,我们还需要安装Langchain的组件

首先是收集我们的内部知识文档,例如我在演示中展示的,我在网上搜集了一下火凤线的相关信息,这是一条小众的徒步路线,在模型的训练数据中从未出现过,正好适合作为我们的知识库数据进行演示。把这些信息保存为txt文件,放置在一个目录中。然后通过Langchain提供的工具,对文档进行切分,例如我们设置以500个字符大小作为切分条件,然后允许切分的文档之间有50个字符的重叠,如以下代码:

from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

loader = DirectoryLoader('huofeng/', glob="**/*.txt")
docs = loader.load()

chunk_size = 500
chunk_overlap = 50
splitter = RecursiveCharacterTextSplitter(
    chunk_size=chunk_size,
    chunk_overlap=chunk_overlap,
)
chunked_docs = splitter.split_documents(docs)

docs = []
for doc in chunked_docs:
    docs.append(doc.page_content)

ids = []
for i in range(len(chunked_docs)):
    ids.append('id'+str(i))

以上代码把切分后的文档内容添加到docs列表中,同时生成对应的id列表。

然后我们就可以建立一个向量数据库,把数据添加进去了,如以下代码:

import chromadb

client = chromadb.PersistentClient(path="./db")
collection = client.create_collection(name="huofeng")

collection.add(documents=docs, ids=ids)

 只要三行代码,我们就建立了一个向量数据库了。然后我们可以测试一下进行查询:

result = collection.query(query_texts="火凤线徒步", n_results=5)

返回的结果如下:

{'ids': [['id8', 'id2', 'id1', 'id12', 'id17']],
 'distances': [[0.9534385363719755,
   0.9863589706903214,
   1.0401753801778044,
   1.1084357742703561,
   1.1092408681204537]],
 'metadatas': [[None, None, None, None, None]],
 'embeddings': None,
 'documents': [['火凤线徒步:\n\n火凤线,即广州市内火炉山到凤凰山 渔东路徒步路线,全程山地,有几个坡度。一般全程12KM左右,适合有一定耐力的户外新人。预计中午15:00左右,走到渔东路结束,自行公交返回。\n\n难度指数:★★☆☆☆ (初级)\n\n风景指数:★★☆☆☆\n\n【市内线.火凤】广州入门级经典徒步路线 火凤线徒步\n\n2021\n\n08\n\n26 15:54\n\n火凤线徒步:\n\n火凤线,即广州市内火炉山到凤凰山 渔东路徒步路线,全程山地,有几个坡度。一般全程12KM左右,适合有一定耐力的户外新人。预计中午15:00左右,走到渔东路结束,自行公交返回。\n\n难度指数:★★☆☆☆ (初级)\n\n风景指数:★★☆☆☆\n\n活动主题:徒步广州火凤线\n\n活动内容:徒步\n\n主 办 方:广州去旅行户外俱乐部\n\n集合时间:周六8:40签到 9:00准点出发(迟到不等,户外活动注意守时)\n\n集合地点:华观路(火炉山森林公园站)\n\n乘车方式:公交B10、20路 、78路A可到\n\n集合标志:“去旅行”黄色旗帜\n\n活动时长:当天来回\n\n交通方式:公共交通\n\n装备建议:\n\n1、午餐干粮零食、水果、至少2L水或运动饮料。',
   '初级登山爱好者的路线\n\n火凤线\n\n8月1/8日,当天来回\n\n火凤线\n\n广州市内经典的徒步路线,火炉山\n\n猪仔山\n\n凤凰山\n\n筲箕窝水库(龙洞)水库\n\n大和嶂\n\n洞旗峰\n\n龙眼洞森林公园,该线路强度等级为标准级,一般情况下需连续不断登山行走9小时以上。\n\n火凤线,顾名思义是从火炉山到凤凰山的一条线路,该线路一般情况走下来大约要4个小时,路程大约11公里。\n\n凤凰山,位于筲箕窝水库东南,主峰海拔373.3米。得名“凤凰山”是因为山顶上有一大草窝,传闻为凤凰栖息之处。\n\n火炉山,因状似从天空俯视其形状象葫芦且山上泥土多为红泥土,所以称火葫芦,简称“火炉”,因此又名火炉山。\n\n火炉山和凤凰山的山路多以阶梯、黄泥路、急升坡为主,没有盘山公路,属于比较接近原生态的类型,没有过度的开发,比较适合于初次徒步的驴友。\n\n【集合地点】火炉山森林公园南门(岑村)B11总站集中\n\n【强难级别】★
<think>嗯,用户现在在寻找关于大模型知识库的工具推荐。首先,我需要理解他们的具体需求。他们可能是在寻找如何将大模型与本地知识库结合的工具,用于企业或个人的知识管理。可能的应用场景包括客服系统、文档分析或者智能问答系统。 接下来,我需要回忆之前提供的引用内容。引用[1]提到了AI大模型的学习资料和实战内容,但用户现在更关注工具推荐。引用[2]则提到了本地大模型知识库工具的部署、微调及对比选型,还提到了CompassArena司南大模型竞技场,这可能是一个有用的资源。 用户需要的是具体的工具推荐,所以应该整理一些常见的工具。比如,LangChain是一个框架,可以用来集成大模型和知识库;LlamaIndex专门用于数据连接和检索;FastChat提供部署和监控功能;DB-GPT和Chinese-LangChain可能更适合中文环境。另外,私有化部署工具如Docker、Kubernetes也是需要考虑的,还有微调工具如Hugging Face Transformers和P-Tuning v2。 然后,用户可能还关心如何选择工具。这时候需要根据他们的具体需求,比如是否需要中文支持、是否需要可视化界面、社区活跃度如何。引用[2]中提到CompassArena的排行榜,可以推荐用户参考那里的大模型评测结果来选择适合的模型。 另外,用户可能没有明确说明他们的技术背景,所以建议分层次推荐,从开源框架到私有化部署工具,再到微调工具,覆盖不同需求。同时,注意事项部分可以帮助他们避免常见问题,比如数据隐私和模型更新。 最后,生成的相关问题需要考虑用户可能的后续疑问,比如如何评估工具性能、部署注意事项、中文优化方法以及安全合规问题。这些问题能够帮助用户进一步深入研究和应用。</think>### 大模型知识库工具推荐及分析 #### 一、核心工具分类 1. **开源框架类** - **LangChain**[^2] 支持多模态数据集成,提供知识检索、对话管理模块,适合构建定制化知识库系统。典型代码结构: ```python from langchain.document_loaders import TextLoader loader = TextLoader("knowledge.txt") documents = loader.load() ``` - **LlamaIndex** 专注数据连接与索引优化,支持私有化部署,提供高效的向量检索接口。 2. **私有化部署工具** - **DB-GPT** 支持本地知识库与LLM结合,提供可视化数据管理界面,适合企业级知识中台建设。 - **Chinese-LangChain** 针对中文场景优化,集成实体识别、语义匹配等模块,支持敏感词过滤。 3. **模型微调工具** - **Hugging Face Transformers**[^1] 提供LoRA等高效微调方法,支持知识蒸馏技术,可通过以下命令安装: ```bash pip install transformers[torch] ``` #### 二、选型建议矩阵 | 工具类型 | 适用场景 | 技术门槛 | 中文支持 | |----------------|---------------------------|----------|----------| | LangChain | 快速原型开发 | 中 | 需扩展 | | DB-GPT | 企业级知识管理 | 高 | 原生支持 | | FastChat | 多模型对比测试 | 低 | 部分支持 | #### 三、部署注意事项 1. 硬件需求应符合公式: $$ \text{显存需求} \geq 2 \times (\text{模型参数量} \times 4\text{bytes}) $$ 2. 知识库更新应遵循版本控制原则,推荐使用Git LFS管理大型数据文件 3. 敏感数据处理需满足: $$ P(\text{泄露}) < 0.01\% \quad \text{(通过差分隐私实现)} $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gzroy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值