在人工智能技术飞速发展的今天,各种创新和应用层出不穷。其中,RAG(Retrieval-Augmented Generation,检索增强生成)作为一种新兴的技术方法,正逐渐成为 AI 2.0 时代的杀手级应用。
那么,什么是 RAG?它如何工作?以及它在实际场景中的应用有哪些?本文将为你详细解答这些问题。
一、RAG 的定义
RAG,全称为 Retrieval-Augmented Generation,直译为「检索增强生成」。简单来说,RAG是一种结合了检索和生成的技术方法。它将传统的基于检索的问答系统和基于自然语言生成的技术相结合,提升了 AI 系统在回答自然语言问题时的准确性和可靠性。
传统的生成模型依赖于大量的训练数据,通过学习这些数据来生成回答。然而,这种方法有一个明显的局限性:大模型在面对从未见过的问题或新兴领域的知识时,会产生不准确或不合逻辑的回答。
而 RAG 通过引入检索机制,首先从大量外部知识库或企业内私有文档中检索出相关信息,然后再结合生成模型,生成更加准确、上下文相关的答案。这种方法既保留了生成模型的灵活性,又增强了其对领域知识的覆盖面和准确性。
二、RAG 的工作原理
RAG 的核心思想是通过「检索-生成」双重机制来提高生成模型的表现。具体来说,它的工作流程可以分为以下几个步骤:
1、问题理解和检索阶段:首先,RAG 模型接收到用户的问题或请求。然后,模型利用检索模块,从预定义的知识库或文档集合中,找到与问题最相关的文本片段。这些片段可以是短语、句子、段落甚至是整个文档。
2、生成阶段:在获取了相关文本片段后,RAG 模型会将这些片段与原始问题结合,输入到生成模型(GPT、通义千问、文心一言等)中。生成模型根据输入内容生成最终的答案或文本输出。
3、输出优化:为了确保生成的答案是相关且准确的,RAG 模型通常会在生成阶段加入后处理步骤,如答案的置信度评估、多候选答案筛选等,以进一步提升生成结果的质量。
这种「检索-生成」的方式使得 RAG 模型不仅可以利用现有的大规模训练数据,还可以从企业私有知识库中获取最新、最相关的信息,确保其生成的内容始终是及时、准确的。
在实际落地会分为用户端和管理端,在管理端进行知识文件的上传,系统会对文档进行文本读取、分快、向量化,将结果存入向量数据库。
用户端在一个搜索框中进行提问,系统会对问题进行向量化处理,然后到向量数据库中进行相似度匹配,将匹配的结果、原始问题、提示词一起提交给大模型,等着大模型的返回结果就好。如下图:
三、RAG 的应用场景
RAG 技术的出现,使得许多传统的 NLP 任务得到了全新的解决方案。以下是几个 RAG 技术的典型应用场景:
1、智能问答:在客服、教育、医疗、企业内部知识库等领域,RAG 技术可以用于构建更为智能的问答系统。这类系统不仅可以回答常规问题,还能根据用户的特定问题实时检索相关信息,提供更加精准的答案。
2、内容生成:RAG 技术还可以用于内容创作领域,如新闻生成、技术文档编写等。通过结合检索到的最新信息,RAG 生成的内容不仅保持了连贯性,还能反映出当前的最新趋势和知识,甚至跟自己历史创作内容相结合,生成的内容可以更具有个人风格。
3、辅助决策:对于需要处理大量文档和信息的行业,如法律、金融等,RAG 技术可以帮助用户快速找到相关案例、法规或市场数据,辅助决策和研究工作。
四、RAG 的技术优势
RAG 作为一种创新的技术方法,具有以下几大优势:
1、知识覆盖面广,更专业 :通过引入检索机制,RAG 可以访问私有领域知识库,这使得它在处理涉及专业领域问题时,依然能够生成准确的答案。
2、生成内容的准确性和上下文相关性增强:相比于传统的生成模型,RAG 生成的内容更加可靠,因为它可以借助检索到的相关信息,确保生成的文本与问题或上下文高度相关。
3、灵活性和扩展性强:RAG 模型可以灵活地应用于不同的领域和任务中,只需更换或扩展其检索库,便能适应新的应用场景。在企业内部,文档针对不同的智能部门有权限之分,RAG 的灵活性就可以很轻松满足这类需求。
五、RAG 的发展前景
随着人工智能技术的不断进步,RAG 作为一种结合了检索和生成的混合技术方法,展示了其巨大的潜力。在未来,我们可以预见,RAG 将在更多的领域得到应用和发展,尤其是在需要大量信息处理和精准生成的场景中。
同时,随着知识库的扩展和生成模型的优化,RAG 的性能和应用广度将进一步提升。未来的 RAG 模型或许将不再局限于文本生成,还可能扩展到多模态生成,如图像、音频等,为各行各业带来更加丰富和智能的解决方案。
例如:我们现在在开发零代码开发平台,有很多的特定行业的实践经验,现在要制作一个行业系统的宣传视频,需要先写文案,再在网上找素材,然后人工进行整合,往往一个视频做完需要一两周的时间,未来 RAG 结合企业内部的专业资料,此类视频就能瞬间完成了。
六、结语
RAG(Retrieval-Augmented Generation)作为 AI2.0 时代的杀手级应用,凭借其「检索-生成」双重机制,成功解决了传统大模型的诸多局限性。它不仅提升了生成内容的准确性和上下文相关性,还扩展了知识的覆盖范围。无论是在智能问答、内容生成还是知识发现等领域,RAG 都展现出了强大的应用潜力。
现在技术成熟度也非常完善,RAG 在企业落地已经不是遥不可及的事情了,后续会继续分享怎样进行 RAG 的落地。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走: