人物交互(human object interaction)论文汇总-2019年

1. Relation Parsing Neural Network for Human-Object Interaction Detection

1.1 总述

提出一种关系解析神经网络RPNN,由两部分组成:物体-身体部位图和人体-身体部位图,前者捕获身体部位与周围物体的关系,后者推断人体与身体部位的关系,并组合身体部位上下文信息以预测动作。这两个图由动作传递机制关联。

总的来说,网络基于人的特征预测动作发生的位置(参与交互物体的位置)的密度;基于物体特征预测每个动作的物体与人之间交互的概率。

1.2 网络结构

在这里插入图片描述
首先输入图像到Mask RCNN进行检测边界框和关键点,然后基于人框和关键点构建身体部位框,接着使用ROI Align提取人框的、物体框的、身体部位框的特征。然后使用这些特征构建Human-Bodypart Graph和Object-Bodypart Graph。然后通过消息传递更新Object-Bodypart Graph,细化后的Object-Bodypart Graph的细化的身体部位结点特征送入Human-Bodypart Graph以初始化该图中的身体部位结点,接着通过消息传递更新Human-Bodypart Graph。最终两个图分别得到细化特征 f h ′ f_{h}^{\prime} fh o h ′ o_{h}^{\prime} oh f h ′ f_{h}^{\prime} fh特征用于预测动作概率以及动作发生的位置密度 g ( h , o ) a g_(h,o)^a g(h,o)a o

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值