五一超级课堂---Llama3-Tutorial(Llama 3 超级课堂)---第三节llama 3图片理解能力微调(xtuner+llava版)

课程文档:
https://github.com/SmartFlowAI/Llama3-Tutorial
课程视频:
https://space.bilibili.com/3546636263360696/channel/collectiondetail?sid=2892740&spm_id_from=333.788.0.0
操作平台:
https://studio.intern-ai.org.cn/console/

在这里插入图片描述
请参照第一节课完成环境配置和webdemo部署以及源码拉取和安装
https://blog.csdn.net/haidizym/article/details/138378194

conda activate llama3
cd ~
git clone https://github.com/SmartFlowAI/Llama3-Tutorial

#模型准备--InternStudio
mkdir -p ~/model
cd ~/model
ln -s /root/share/new_models/meta-llama/Meta-Llama-3-8B-Instruct .
#模型准备--非 InternStudio
#mkdir -p ~/model
#cd ~/model
#git lfs install
#git clone https://code.openxlab.org.cn/MrCat/Llama-3-8B-Instruct.git Meta-Llama-3-8B-Instruct
#准备 openai/clip-vit-large-patch14-336,权重,即 Visual Encoder 权重,非 InternStudio,可以访问 https://huggingface.co/openai/clip-vit-large-patch14-336 以进行下载。
ln -s /root/share/new_models/openai/clip-vit-large-patch14-336 .
#准备 Image Projector 权重
ln -s /root/share/new_models/xtuner/llama3-llava-iter_2181.pth .

#数据准备,按照 https://github.com/InternLM/Tutorial/blob/camp2/xtuner/llava/xtuner_llava.md 中的教程来准备微调数据。
cd ~
git clone https://github.com/InternLM/tutorial -b camp2
python ~/tutorial/xtuner/llava/llava_data/repeat.py \
  -i ~/tutorial/xtuner/llava/llava_data/unique_data.json \
  -o ~/tutorial/xtuner/llava/llava_data/repeated_data.json \
  -n 200

#模型微调,算力不够,可以考虑把deepspeed zero2换成deepspeed zero2 offload
#xtuner train ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py --work-dir ~/llama3_llava_pth --deepspeed deepspeed_zero2_offload
xtuner train ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py --work-dir ~/llama3_llava_pth --deepspeed deepspeed_zero2
#模型转换
xtuner convert pth_to_hf ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py \
  ~/model/llama3-llava-iter_2181.pth \
  ~/llama3_llava_pth/pretrain_iter_2181_hf

xtuner convert pth_to_hf ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py \
  ~/llama3_llava_pth/iter_1200.pth \
  ~/llama3_llava_pth/iter_1200_hf

#Pretrain 模型,问题1:Describe this image. 问题2:What is the equipment in the image?
export MKL_SERVICE_FORCE_INTEL=1
xtuner chat /root/model/Meta-Llama-3-8B-Instruct \
  --visual-encoder /root/model/clip-vit-large-patch14-336 \
  --llava /root/llama3_llava_pth/pretrain_iter_2181_hf \
  --prompt-template llama3_chat \
  --image /root/tutorial/xtuner/llava/llava_data/test_img/oph.jpg

#Finetune 后 模型,问题1:Describe this image. 问题2:What is the equipment in the image?
export MKL_SERVICE_FORCE_INTEL=1
xtuner chat /root/model/Meta-Llama-3-8B-Instruct \
  --visual-encoder /root/model/clip-vit-large-patch14-336 \
  --llava /root/llama3_llava_pth/iter_1200_hf \
  --prompt-template llama3_chat \
  --image /root/tutorial/xtuner/llava/llava_data/test_img/oph.jpg
注释1

“python ~/tutorial/xtuner/llava/llava_data/repeat.py
-i ~/tutorial/xtuner/llava/llava_data/unique_data.json
-o ~/tutorial/xtuner/llava/llava_data/repeated_data.json
-n 200”
这段代码是一个Python脚本,路径为~/tutorial/xtuner/llava/llava_data/repeat.py。它的作用是读取一个JSON文件~/tutorial/xtuner/llava/llava_data/unique_data.json,然后将其中的数据重复200次,并将结果保存到另一个JSON文件~/tutorial/xtuner/llava/llava_data/repeated_data.json中。

具体参数说明如下:

  • -i:指定输入文件的路径,即要重复的原始数据的JSON文件路径。
  • -o:指定输出文件的路径,即重复后的数据要保存到的JSON文件路径。
  • -n:指定重复的次数,这里设置为200次。

所以,这段代码的作用是将unique_data.json文件中的数据重复200次,然后将结果保存到repeated_data.json文件中。

注释2

“llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py --work-dir ~/llama3_llava_pth --deepspeed deepspeed_zero2”
这段代码是在运行一个Python脚本llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py,这个脚本的路径是相对于当前工作目录的(可能是相对于用户的主目录或当前工作目录)。指定了一些参数来配置脚本的行为。下面是对参数的解释:

  • --work-dir ~/llama3_llava_pth:指定了工作目录的路径,即脚本执行时的工作目录。这个路径是用户主目录下的llama3_llava_pth目录。

  • --deepspeed deepspeed_zero2:使用DeepSpeed进行加速训练的参数配置。deepspeed_zero2可能是DeepSpeed的配置文件或者某种模式的标识,具体的含义需要参考DeepSpeed的文档或者脚本的说明。

所以,这段代码的作用是在指定的工作目录下执行llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py脚本,并使用DeepSpeed进行加速训练。

注释3

“xtuner convert pth_to_hf ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py
~/model/llama3-llava-iter_2181.pth
~/llama3_llava_pth/pretrain_iter_2181_hf”

这段代码是在运行一个名为xtuner的命令行工具,执行了其中的一个子命令convert,并提供了一系列参数。下面是对参数的解释:

  • pth_to_hf:这是xtuner工具的子命令,指示将PyTorch模型(.pth文件)转换为Hugging Face Transformers库所需的格式。

  • ~/Llama3-Tutorial/configs/llama3-llava/llava_llama3_8b_instruct_qlora_clip_vit_large_p14_336_lora_e1_finetune.py:指定了一个配置文件的路径,该配置文件描述了模型结构和训练参数等信息,用于指导模型转换。

  • ~/model/llama3-llava-iter_2181.pth:指定了要转换的PyTorch模型的路径,这里是llama3-llava-iter_2181.pth文件。

  • ~/llama3_llava_pth/pretrain_iter_2181_hf:指定了输出路径,即转换后的模型将保存到pretrain_iter_2181_hf目录中,用于后续在Hugging Face Transformers库中加载和使用。

所以,这段代码的作用是使用xtuner工具将PyTorch模型llama3-llava-iter_2181.pth转换为Hugging Face Transformers库所需的格式,并根据提供的配置文件进行适当的转换。

注释4

“export MKL_SERVICE_FORCE_INTEL=1
xtuner chat /root/model/Meta-Llama-3-8B-Instruct
–visual-encoder /root/model/clip-vit-large-patch14-336
–llava /root/llama3_llava_pth/pretrain_iter_2181_hf
–prompt-template llama3_chat
–image /root/tutorial/xtuner/llava/llava_data/test_img/oph.jpg”
这段代码是一系列命令行操作,其中涉及了环境变量的设置和一个名为xtuner的工具的使用,提供了一些参数。下面是对代码的注释:

  • export MKL_SERVICE_FORCE_INTEL=1:这是一个环境变量设置命令,将MKL(Math Kernel Library)服务强制指定为Intel实现。这通常用于优化数值计算的性能。

  • xtuner chat /root/model/Meta-Llama-3-8B-Instruct:这是一个使用xtuner工具的命令,其中chatxtuner工具的一个子命令。它用于启动一个交互式会话,该会话基于给定的模型进行对话。

  • --visual-encoder /root/model/clip-vit-large-patch14-336:指定了视觉编码器的模型路径,用于处理图像输入。这里使用了一个模型路径clip-vit-large-patch14-336

  • --llava /root/llama3_llava_pth/pretrain_iter_2181_hf:指定了LLAVA(LLAMA Visual-Text Attention)模型的路径,该模型经过了预训练并转换为Hugging Face Transformers库所需的格式。这个路径是pretrain_iter_2181_hf

  • --prompt-template llama3_chat:指定了对话的模板名称,用于生成对话的起始提示。

  • --image /root/tutorial/xtuner/llava/llava_data/test_img/oph.jpg:指定了一个图像文件的路径,该图像将作为对话的一部分输入到模型中。

所以,这段代码的作用是启动一个交互式会话,使用给定的视觉编码器模型和LLAVA模型,以及指定的对话模板和图像文件进行对话。

截图

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
使用不了加速
在这里插入图片描述
在这里插入图片描述
ImportError: deepspeed is not installed properly, please check.
之前安装xtuner时候是不是没有 pip install -e .[all]
重新安装xtuner用 pip install -e .[all]
在这里插入图片描述在这里插入图片描述在这里插入图片描述
重新安装xtuner用 pip install -e .[all],并且把deepspeed_zero2换成deepspeed_zero2_offload后,终于可以开始训练了
在这里插入图片描述在这里插入图片描述在这里插入图片描述
近6个小时的等待,终于快好了,今天不知道怎么这么慢,不用offload就out of memory,用offload就只能以时间换空间了,
在这里插入图片描述
庆祝漫长的等待!!!

在这里插入图片描述
模型转换
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

oom问题

①使用https://github.com/SmartFlowAI/Llama3-Tutorial/blob/main/tools/internstudio_quant_web_demo.py,原来是 streamlit run internstudio_web_demo.py xxxx,现在是 streamlit run internstudio_quant_web_demo.py xxxxx
②添加指令–device cpu,以使用cpu运行指令;
③添加指令–deepspeed deepspeed_zero2,或者–deepspeed deepspeed_zero2_offload(在配置环境时须在xtuner目录下执行指令pip install ‘.[all]’)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值