基于resnet-18的轻量型车道检测研究
论文2: Ultra Fast Structure-aware Deep Lane Detection
官方代码地址:https://github.com/cfzd/Ultra-Fast-Lane-Detection
该论文的轻量型模型以Resnet-18为底。
1.论文介绍以及实验
论文方法:将车道线检测定义为寻找车道线在图像中某些行的位置的集合,即基于行方向上的位置选择、分类(row-based classification),而分割是逐像素上channel(通道)维度的选择。该文把车道线检测问题看作基于全局图像特征的行搜索问题(row-based selecting method based on global image features)实际上就是在图像中预先定义多个row anchor,把每一个anchor都gridding为多个cell,通过预测每一cell中车道线的存在概率,实现车道线检测。
参考内容:https://zhuanlan.zhihu.com/p/157530787,原作者的检测示意图。
在图森数据集中,作者设置的row_anchor = [64-284],其中区间高度为4。
其中图森数据集制作以及训练过程参考上一篇博客:https://blog.csdn.net/han422858897/article/details/121