入门端到端第一步!最新综述回顾基于深度学习的规划方法发展历程

这篇新的综述,系统的回顾了基于深度学习的预测和规划方法, 端到端方法的发展历程, 非常适合初学者了解领域背景.

The Integration of Prediction and Planning in Deep
Learning Automated Driving Systems: A Review

0. 摘要

自动化驾驶系统有潜力彻底改变个人、公共和货物的流动性。除了感知的巨大挑战,即利用现有的传感器数据准确感知环境,自动化驾驶还包括规划一个安全、舒适和高效的运动轨迹。为了促进安全和进步,许多工作依赖于预测周围交通未来运动的模块。模块化的自动化驾驶系统通常将预测和规划作为顺序独立的任务来处理。虽然这种方法考虑了周围交通对自动驾驶车辆的影响,但它未能预测交通参与者对自动驾驶车辆行为的反应。最近的工作表明,在相互依赖的联合步骤中整合预测和规划对于实现安全、高效和舒适的驾驶是必要的。虽然各种模型实现了这样的集成系统,但缺乏对不同原则的全面概述和理论理解。我们系统地回顾了最先进的基于深度学习的预测、规划和集成预测规划模型。从模型架构和模型设计到行为方面考虑了集成的不同方面,并将它们相互关联。此外,我们讨论了不同集成方法的含义、优势和局限性。通过指出研究空白、描述相关的未来挑战,并强调研究领域的趋势,我们确定了未来研究的有前景的方向。

1. 引言

1.1 自动驾驶的子任务划分

自动驾驶技术(AD)是一项复杂的系统工程,它通常被划分为几个关键子任务,以确保驾驶过程的安全性、效率和舒适性。这些子任务包括感知、预测、规划和控制。感知任务负责处理来自车辆传感器的输入数据,创建周围环境的模型。预测子任务是基于感知数据,对未来交通参与者的行为进行预测。规划子任务则是基于预测结果,为自动驾驶车辆本身规划一条安全、舒适且高效的运动轨迹。最后,控制子任务执行规划任务产生的轨迹,通过车辆的控制系统来实现。

在自动驾驶系统中,各个子任务之间存在着紧密的相互依赖关系。例如,感知模块的性能直接影响预测和规划的准确性,而规划的结果又需要控制模块能够精确执行。因此,这些子任务必须协同工作,才能实现自动驾驶系统的整体目标。

1.2 预测与规划的关系

预测和规划是自动驾驶系统中的两个核心子任务,它们之间的关系对于实现安全驾驶至关重要。预测模块负责预测周围交通参与者的未来行为,而规划模块则需要基于这些预测来规划自动驾驶车辆的轨迹。这两个模块之间的交互是双向的:一方面,规划模块需要准确的预测信息来规划合理的轨迹;另一方面,规划模块的决策也会影响周围交通参与者的行为,从而需要预测模块考虑这些潜在的影响。

传统的自动驾驶系统通常将预测和规划作为两个独立的模块来处理,这种模块化方法虽然在实现上较为简单,但它忽视了两个模块之间的相互作用。例如,自动驾驶车辆的规划决策可能会影响周围车辆的行为,而这些行为的变化又需要预测模块进行更新。因此,为了实现更加安全和高效的自动驾驶,越来越多的研究开始探索如何将预测和规划集成到一个联合模型中,以实现双向的交互和更复杂场景下的适应性。

在自动驾驶的研究和实践中,对预测和规划集成方法的探索是一个活跃的研究方向。例如,一些研究提出了将预测和规划集成的方法,通过共享特征表示或联合优化来提高系统的安全性和效率。这些方法的共同目标是在保持系统可解释性的同时,提高对复杂交通场景的适应能力。通过对这些方法的系统性回顾和分析,可以为未来的自动驾驶系统设计提供理论基础和实践指导。

2. 自动驾驶系统

2.1 系统架构

自动驾驶系统的架构是实现自动驾驶功能的基础。一个典型的自动驾驶系统架构包括以下几个关键组成部分:

  • 感知模块:负责收集和处理来自车辆传感器(如摄像头、雷达、激光雷达等)的数据,以识别周围环境,包括其他车辆、行人、道路标志和交通信号等。
  • 预测模块:基于感知模块提供的环境信息,预测周围交通参与者的未来行为和轨迹。
  • 规划模块:根据预测结果,规划自动驾驶车辆的行驶轨迹,确保安全、舒适和高效。
  • 控制模块:执行规划模块生成的轨迹,通过控制车辆的油门、刹车和转向系统来跟踪预定轨迹。

这些模块通常被设计为相互独立的子系统,但它们之间的交互对于实现自动驾驶至关重要。例如,控制模块的执行效果会反馈到感知模块,以更新车辆的状态和环境信息。

2.1.1 模块化与集成化架构

  • 模块化架构:在这种架构中,每个子任务由专门的模块独立处理。模块化设计有助于将复杂问题分解为更小、更易于管理的部分,同时也便于单独优化每个模块。
  • 集成化架构:集成化架构强调子任务之间的协同
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值