参考高博士的书,ORB改进FAST的方面:
1,区域:非极大值抑制(non_maximal supression)
2, 数量:计算harries响应值,取前n个
3,尺度不变性:pyramid
4,旋转不变形:灰度质心法
5,brief描述子
opencv中的ORB类是一个纯虚类,继承于Feature2D类,无法进行实例化创建对象。提供静态成员函数ORB::create()供调用。
static Ptr< ORB > create (int nfeatures=500, float scaleFactor=1.2f,
int nlevels=8, int edgeThreshold=31, int firstLevel=0, int WTA_K=2,
int scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20)
下面介绍一下各个参数的含义:
nfeatures - 最多提取的特征点的数量;
scaleFactor - 金字塔图像之间的尺度参数,类似于SIFT中的;
nlevels – 高斯金字塔的层数;
edgeThreshold – 边缘阈值,这个值主要是根据后面的patchSize来定的,靠近边缘edgeThreshold以内的像素是不检测特征点的。
firstLevel - 看过SIFT都知道,我们可以指定第一层的索引值,这里默认为0。
WET_K - 用于产生BIREF描述子的 点对的个数,一般为2个,也可以设置为3个或4个,那么这时候描述子之间的距离计算就不能用汉明距离了,而是应该用一个变种。OpenCV中,如果设置WET_K = 2,则选用点对就只有2个点,匹配的时候距离参数选择NORM_HAMMING,如果WET_K设置为3或4,则BIREF描述子会选择3个或4个点,那么后面匹配的时候应该选择的距离参数为NORM_HAMMING2。
scoreType - 用于对特征点进行排序的算法,你可以选择HARRIS_SCORE,也可以选择FAST_SCORE,但是它也只是比前者快一点点而已。
patchSize – 用于计算BIREF描述子的特征点邻域大小。
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;
int main(int argc, char** argv)
{
if(argc!=3)//判断命令行输入对错
{
cout<<"usage: feature_extraction img1 img2"<<endl;
return 1;
}
//读取要匹配的两张图像
Mat img_1 = imread("路径");
Mat img_2 = imread(“路径”);
//首先创建两个关键点数组,用于存放两张图像的关键点,数组元素是KeyPoint类型
std::vector<KeyPoint> keypoints_1, keypoints_2;
//创建两张图像的描述子
Mat descriptors_1, descriptors_2;
//创建一个ORB类型指针orb,ORB类是继承自Feature2D类
//class CV_EXPORTS_W ORB : public Feature2D
//这里看一下create()源码:参数较多,不介绍。
//creat()方法所有参数都有默认值,返回static Ptr<ORB>类型。
/*
CV_WRAP static Ptr<ORB> create(int nfeatures=500,
float scaleFactor=1.2f,
int nlevels=8,
int edgeThreshold=31,
int firstLevel=0,
int WTA_K=2,
int scoreType=ORB::HARRIS_SCORE,
int patchSize=31,
int fastThreshold=20);
*/
//所以这里的语句就是创建一个Ptr<ORB>类型的orb,用于接收ORB类中create()函数的返回值
Ptr<ORB> orb = ORB::create();
//第一步:检测Oriented FAST角点位置.
//detect是Feature2D中的方法,orb是子类指针,可以调用
//看一下detect()方法的原型参数:需要检测的图像,关键点数组,第三个参数为默认值
/*
CV_WRAP virtual void detect( InputArray image,
CV_OUT std::vector<KeyPoint>& keypoints,
InputArray mask=noArray() );
*/
orb->detect(img_1, keypoints_1);
orb->detect(img_2, keypoints_2);
//第二步:根据角点位置计算BRIEF描述子
//compute是Feature2D中的方法,orb是子类指针,可以调用
//看一下compute()原型参数:图像,图像的关键点数组,Mat类型的描述子
/*
CV_WRAP virtual void compute( InputArray image,
CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints,
OutputArray descriptors );
*/
orb->compute(img_1, keypoints_1, descriptors_1);
orb->compute(img_2, keypoints_2, descriptors_2);
//定义输出检测特征点的图片。
Mat outimg1;
//drawKeypoints()函数原型参数:原图,原图关键点,带有关键点的输出图像,后面两个为默认值
/*
CV_EXPORTS_W void drawKeypoints( InputArray image,
const std::vector<KeyPoint>& keypoints,
InputOutputArray outImage,
const Scalar& color=Scalar::all(-1),
int flags=DrawMatchesFlags::DEFAULT );
*/
//注意看,这里并没有用到描述子,描述子的作用是用于后面的关键点筛选。
drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
imshow("ORB特征点",outimg1);
//第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
//创建一个匹配点数组,用于承接匹配出的DMatch,其实叫match_points_array更为贴切。matches类型为数组,元素类型为DMatch
vector<DMatch> matches;
//创建一个BFMatcher匹配器,BFMatcher类构造函数如下:两个参数都有默认值,但是第一个距离类型下面使用的并不是默认值,而是汉明距离
//CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
BFMatcher matcher (NORM_HAMMING);
//调用matcher的match方法进行匹配,这里用到了描述子,没有用关键点。
//匹配出来的结果写入上方定义的matches[]数组中
matcher.match(descriptors_1, descriptors_2, matches);
//第四步:遍历matches[]数组,找出匹配点的最大距离和最小距离,用于后面的匹配点筛选。
//这里的距离是上方求出的汉明距离数组,汉明距离表征了两个匹配的相似程度,所以也就找出了最相似和最不相似的两组点之间的距离。
double min_dist=0, max_dist=0;//定义距离
for (int i = 0; i < descriptors_1.rows; ++i)//遍历
{
double dist = matches[i].distance;
if(dist<min_dist) min_dist = dist;
if(dist>max_dist) max_dist = dist;
}
printf("Max dist: %f\n", max_dist);
printf("Min dist: %f\n", min_dist);
//第五步:根据最小距离,对匹配点进行筛选,
//当描述自之间的距离大于两倍的min_dist,即认为匹配有误,舍弃掉。
//但是有时最小距离非常小,比如趋近于0了,所以这样就会导致min_dist到2*min_dist之间没有几个匹配。
// 所以,在2*min_dist小于30的时候,就取30当上限值,小于30即可,不用2*min_dist这个值了
std::vector<DMatch> good_matches;
for (int j = 0; j < descriptors_1.rows; ++j)
{
if (matches[j].distance <= max(2*min_dist, 30.0))
good_matches.push_back(matches[j]);
}
//第六步:绘制匹配结果
Mat img_match;//所有匹配点图
//这里看一下drawMatches()原型参数,简单用法就是:图1,图1关键点,图2,图2关键点,匹配数组,承接图像,后面的有默认值
/*
CV_EXPORTS_W void drawMatches( InputArray img1,
const std::vector<KeyPoint>& keypoints1,
InputArray img2,
const std::vector<KeyPoint>& keypoints2,
const std::vector<DMatch>& matches1to2,
InputOutputArray outImg,
const Scalar& matchColor=Scalar::all(-1),
const Scalar& singlePointColor=Scalar::all(-1),
const std::vector<char>& matchesMask=std::vector<char>(),
int flags=DrawMatchesFlags::DEFAULT );
*/
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
imshow("所有匹配点对", img_match);
Mat img_goodmatch;//筛选后的匹配点图
drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
imshow("筛选后的匹配点对", img_goodmatch);
waitKey(0);
return 0;
}
ORB角点
ORB角点匹配