转自zhiyong_will http://blog.csdn.net/google19890102/article/details/18222103
一、极限学习机的概念
极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。
ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。
二、极限学习机的原理
ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏置并得到相应的输出权重。
(选自黄广斌老师的PPT)
对于一个单隐层神经网络(见Figure 1),假设有个任意的样本,其中,。对于一个有个隐层节点的单隐层神经网络可以表示为
其中,为激活函数,为输入权重,为输出权重,是第个隐层单元的偏置。表示和的内积。
单隐层神经网络学习的目标是使得输出的误差最小,可以表示为
即存在,和,使得
可以矩阵表示为
其中,是隐层节点的输出,为输出权重,为期望输出。
,
为了能够训练单隐层神经网络,我们希望得到,和,使得
其中,,这等价于最小化损失函数
传统的一些基于梯度下降法的算法,可以用来求解这样的问题,但是基本的基于梯度的学习算法需要在迭代的过程中调整所有参数。而在ELM算法中, 一旦输入权重和隐层的偏置被随机确定,隐层的输出矩阵就被唯一确定。训练单隐层神经网络可以转化为求解一个线性系统。并且输出权重可以被确定
其中,是矩阵的Moore-Penrose广义逆。且可证明求得的解的范数是最小的并且唯一。
三、实验
原始数据集
我们采用统计错误率的方式来评价实验的效果,其中错误率公式为:
对于这样一个简单的问题,。
MATLAB代码
主程序
- %% 主函数,二分类问题
-
- %导入数据集
- A = load('testSet.txt');
-
- data = A(:,1:2);%特征
- label = A(:,3);%标签
-
- [N,n] = size(data);
-
- L = 100;%隐层节点个数
- m = 2;%要分的类别数
-
- %--初始化权重和偏置矩阵
- W = rand(n,L)*2-1;
- b_1 = rand(1,L);
- ind = ones(N,1);
- b = b_1(ind,:);%扩充成N*L的矩阵
-
- tempH = data*W+b;
- H = g(tempH);%得到H
-
- %对输出做处理
- temp_T=zeros(N,m);
- for i = 1:N
- if label(i,:) == 0
- temp_T(i,1) = 1;
- else
- temp_T(i,2) = 1;
- end
- end
- T = temp_T*2-1;
-
- outputWeight = pinv(H)*T;
-
- %--画出图形
- x_1 = data(:,1);
- x_2 = data(:,2);
- hold on
- for i = 1 : N
- if label(i,:) == 0
- plot(x_1(i,:),x_2(i,:),'.g');
- else
- plot(x_1(i,:),x_2(i,:),'.r');
- end
- end
-
- output = H * outputWeight;
- %---计算错误率
- tempCorrect=0;
- for i = 1:N
- [maxNum,index] = max(output(i,:));
- index = index-1;
- if index == label(i,:);
- tempCorrect = tempCorrect+1;
- end
- end
-
- errorRate = 1-tempCorrect./N;
激活函数
- function [ H ] = g( X )
- H = 1 ./ (1 + exp(-X));
- end