获取更多资讯,赶快关注上面的公众号吧!
蜉蝣算法(Mayfly Algorithm,MA)是由Konstantinos Zervoudakis于2020年提出的一种新型智能优化算法,该算法模拟了蜉蝣的飞行行为和交配过程,综合了群体智能和进化算法的优势。本文将带来该算法的原理介绍,扫码关注公众号,后台回复“蜉蝣”可以获取Matlab代码。
蜉蝣是蜉蝣目昆虫,在从卵中孵化出来后,蜉蝣幼虫肉眼可见,它们要花几年的时间作为水生若虫生长,直到成年后才可以上升到水面。成年蜉蝣在完成繁殖的最终目标前只能存活几天时间。为了吸引雌性,大多数成年雄性会聚集在水面上方几米的地方,通过特有的上下运动模式来表演一种婚礼舞蹈>雌性飞入这些种群中以与空中的雄性交配。交配可能只持续几秒钟,当交配完成后,雌性把卵排到水面上,以延续下一代。
蜉蝣算法就是受上述启发而提出的一种新型优化算法, 其可以认为是粒子群优化算法()的一种改进,综合了粒子群PSO、遗传算法GA和萤火虫算法FA的各大优势。
假设:
- 蜉蝣从卵中孵化出来就已经是成虫,无论活多久,最适应的蜉蝣都能存活下来;
- 每只蜉蝣在搜索空间中的位置代表了问题的一个可行解;
- 初始时,随机生成两个蜉蝣种群,分别代表雄性和雌性种群,即每只蜉蝣作为一个候选解被随机置于问题空间中,该候选解可通过一个d维向量 x = ( x 1 , ⋯ , x d ) \mathbf{x}=\left(x_{1}, \cdots, x_{d}\right) x=(x1,⋯,xd)来表达,且其性能可根据预定义的目标函数 f ( x ) f(\mathbf{x}) f(x)评估得到;
- 蜉蝣的速度定义为其位置的变化,飞行方向是个体和社会飞行经验的动态交互。特别地,蜉蝣会根据当前的个体最优位置( p b e s t pbest pbest)以及当前种群的最优位置( g b e s t gbest gbest)调整其轨迹。
雄性蜉蝣的移动
雄蜉蝣的群居,意味着每只雄蜉蝣的位置是根据自己的经验和邻居的经验调整的。假设 x i t x_i^t xit是时间步 t t t蜉蝣 i i i在搜索空间中的当前位置,通过在当前位置上添加一个速度 v i i + 1 v_i^{i+1} vii+1来改变位置:
x i t + 1 = x i t + v i t + 1 (1) x_i^{t+1}=x_i^{t}+v_i^{t+1}\tag{1} xit+1=xit+vit+1(1)
其中 x i 0 ∈ U ( x m i n , x m a x ) x_i^0\in U(x_{min},x_{max}) xi0∈U(xmin,xmax)
考虑到雄蜉蝣通常是在水面以上几米的位置跳舞,可以假设它们不会有太大的速度,且它们是不断移动的,所以雄蜉蝣的速度可以计算为:
v
i
j
t
+
1
=
v
i
j
t
+
a
1
e
−
β
r
p
2
(
p
b
e
s
t
i
j
−
x
i
j
t
)
+
a
2
e
−
β
r
g
2
(
g
b
e
s
t
j
−
x
i
j
t
)
(2)
\left.v_{i j}^{t+1}=v_{i j}^{t}+a_{1} e^{-\beta r_{p}^{2}}\left( pbest_{i j}-x_{i j}^{t}\right)+a_{2} e^{-\beta r_{g}^{2}}\left( gbest _{j}\right.-x_{i j}^{t}\right)\tag{2}
vijt+1=vijt+a1e−βrp2(pbestij−xijt)+a2e−βrg2(gbestj−xijt)(2)
其中
v
i
j
t
v_{i j}^{t}
vijt是时间步
t
t
t蜉蝣
i
i
i在维度
j
=
1
,
.
.
.
,
n
j=1,...,n
j=1,...,n上的速度,
x
i
j
t
x_{i j}^{t}
xijt是时间步
t
t
t蜉蝣
i
i
i在维度
j
j
j上的位置,
a
1
a_1
a1和
a
2
a_2
a2是正吸引常数,分别用于缩放认知和社会部分的贡献。
p
b
e
s
t
i
pbest_i
pbesti是蜉蝣
i
i
i访问过的最优位置,考虑最小化问题,下一时间步
t
+
1
t+1
t+1的个体最优位置
p
b
e
s
t
i
j
pbest_{ij}
pbestij可计算为:
KaTeX parse error: Unknown column alignment: * at position 37: …{\begin{array}{*̲{20}{c}} {lx_i^…
其中
f
:
R
n
→
R
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
f:Rn→R为目标函数,时间步
t
t
t的全局最优位置
g
b
e
s
t
gbest
gbest定义为:
g
b
e
s
t
∈
{
p
b
e
s
t
1
,
p
b
e
s
t
2
,
⋯
,
p
b
e
s
t
N
∣
f
(
c
b
e
s
t
)
}
=
min
{
f
(
p
b
e
s
t
1
)
,
f
(
p
b
e
s
t
2
)
,
⋯
,
f
(
p
b
e
s
t
N
)
}
(4)
\begin{aligned} & { gbest } \in\left\{ { pbest }_{1}, { pbest }_{2}, \cdots, { pbest }_{N} \mid f( { cbest })\right\} \\ &\quad=\min \left\{f\left(p b e s t_{1}\right), f\left(p b e s t_{2}\right), \cdots, f\left(p b e s t_{N}\right)\right\} \end{aligned}\tag{4}
gbest∈{pbest1,pbest2,⋯,pbestN∣f(cbest)}=min{f(pbest1),f(pbest2),⋯,f(pbestN)}(4)
其中
N
N
N是种群中雄性蜉蝣总数。
β
\beta
β是固定的可见度系数,用于限制蜉蝣的可见度,而
r
p
r_{p}
rp和
r
g
r_g
rg分别是是
x
i
x_i
xi与
p
b
e
s
t
i
pbest_i
pbesti,
x
i
x_i
xi与
g
b
e
s
t
gbest
gbest之间的笛卡尔距离:
∥
x
i
−
X
i
∥
=
∑
j
=
1
n
(
x
i
j
−
X
i
j
)
2
(5)
\left\|x_{i}-X_{i}\right\|=\sqrt{\sum_{j=1}^{n}\left(x_{i j}-X_{i j}\right)^{2}}\tag{5}
∥xi−Xi∥=j=1∑n(xij−Xij)2(5)
其中
x
i
j
x_{ij}
xij为蜉蝣
i
i
i的第
j
j
j个元素,
X
i
X_i
Xi对应
p
b
e
s
t
i
pbest_i
pbesti或
g
b
e
s
t
gbest
gbest。
种群中最优蜉蝣继续表演它们特有的上下婚礼舞蹈,这对算法的功能是很重要的。因此,最优蜉蝣必须不断改变它们的速度:
v
i
j
t
+
1
=
v
i
j
t
+
d
∗
r
(6)
v_{i j}^{t+1}=v_{i j}^{t}+d * r\tag{6}
vijt+1=vijt+d∗r(6)
其中
d
d
d为婚舞距离系数,
r
r
r为[-1,1]范围内的随机数。通过这种上下移动就为算法引入了随机元素。
雌性蜉蝣的移动
不同于雄性蜉蝣,雌性蜉蝣并不会成群结队,而是飞向雄性以进行繁殖。假设
y
i
t
y_i^t
yit是时间步
t
t
t雌性蜉蝣
i
i
i在搜索空间中的当前位置,那在当前位置上增加一个速度
v
i
t
+
1
v_i^{t+1}
vit+1就可以改变这个位置,即:
y
i
t
+
1
=
y
i
t
+
v
i
t
+
1
(7)
y_{i}^{t+1}=y_{i}^{t}+v_{i}^{t+1}\tag{7}
yit+1=yit+vit+1(7)
其中y_{i}^{0}
∈
\in
∈
U
(
y
m
i
n
,
y
m
a
x
)
U(y_{min},y_{max})
U(ymin,ymax)。
尽管吸引过程是随机的,但为了简便可以将其视为确定过程,也就是说,可以根据其适应度值,最优雄性吸引最优雌性,第二优雄性吸引第二有雌性,以此类推。那么考虑最小化问题时,其速度按如下计算:
v
i
j
t
+
1
=
{
v
i
j
t
+
a
2
e
−
β
r
m
f
2
(
x
i
j
t
−
y
i
j
t
)
,
if
f
(
y
i
)
>
f
(
x
i
)
v
i
j
t
+
f
l
∗
r
,
if
f
(
y
i
)
≤
f
(
x
i
)
(8)
v_{i j}^{t+1}=\left\{\begin{array}{l} v_{i j}^{t}+a_{2} e^{-\beta r_{m f}^{2}}\left(x_{i j}^{t}-y_{i j}^{t}\right), \text { if } f\left(y_{i}\right)>f\left(x_{i}\right) \\ v_{i j}^{t}+f l * r, \text { if } f\left(y_{i}\right) \leq f\left(x_{i}\right) \end{array}\right.\tag{8}
vijt+1={vijt+a2e−βrmf2(xijt−yijt), if f(yi)>f(xi)vijt+fl∗r, if f(yi)≤f(xi)(8)
其中,
v
i
j
t
v_{i j}^{t}
vijt是时间步
t
t
t雌性蜉蝣
i
i
i在维度
j
=
1
,
.
.
.
,
n
j=1,...,n
j=1,...,n上的速度,
y
i
j
t
y_{i j}^{t}
yijt是时间步
t
t
t雌性蜉蝣
i
i
i在维度
j
j
j上的位置,
a
2
a_{2}
a2是正吸引常数,
β
\beta
β是固定可见度常数,
r
m
f
r_{m f}
rmf是雄性和雌性之间的笛卡尔距离,
f
l
fl
fl是随机游走系数,当雌性没有被雄性吸引时使用,此时雌性随机飞行,且
r
r
r是[-1,1]范围内的随机值。
蜉蝣交配
交叉算法表达了两只蜉蝣之间的交配过程:从雄性种群和雌性种群中分别选择一个父代,选择方式同雄性吸引雌性的方式相同。特别地,选择可以是随机的也可以是基于适应度值的,如果是后者,则最优雌性与最优雄性交配,第二优之间交配,以此类推。交叉的结果就是生成如下两个子代:
o
f
f
s
p
r
i
n
g
1
=
L
∗
m
a
l
e
+
(
1
−
L
)
∗
f
e
m
a
l
e
o
f
f
s
p
r
i
n
g
2
=
L
∗
f
e
m
a
l
e
+
(
1
−
L
)
∗
m
a
l
e
(9)
\begin{aligned} \ { offspring } 1 &=L * \ { male }+(1-L) * \ { female } \\ \ { offspring2 } &=L * \ { female }+(1-L) * \ { male } \end{aligned}\tag{9}
offspring1 offspring2=L∗ male+(1−L)∗ female=L∗ female+(1−L)∗ male(9)
其中
m
a
l
e
male
male是雄性父代,#female
是
雌
性
父
代
,
是雌性父代,
是雌性父代,L$是特定范围内的随机值,子代初始速度为0。
伪代码
目标函数 f ( x ) , x = ( x 1 , … , x d ) T f(\mathbf{x}), \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)^{T} f(x),x=(x1,…,xd)T
初始化雄性蜉蝣种群 x i ( i = 1 , 2 , … , N ) x_{i}(i=1,2, \ldots, N) xi(i=1,2,…,N)及速度 v m i v_{mi} vmi
初始化雌性蜉蝣种群 y i ( i = 1 , 2 , … , M ) y_{i}(i=1,2, \ldots, M) yi(i=1,2,…,M)及速度 v f i v_{fi} vfi
评估各蜉蝣适应度值
找到全局最优解 g b e s t gbest gbest
Do While 未满足终止准则
更新雄性和雌性的速度和解
评估解
蜉蝣排序
蜉蝣交配
评估子代
随机将子代分为雄性和雌性
更新 p b e s t pbest pbest和 g b e s t gbest gbest
end while
结果后处理及可视化。