De Boor递推算法

De Boor算法

u ∈ [ u j , u j + 1 ) u\in\left[u_j,u_{j+1}\right) u[uj,uj+1) V i , 0 = V i V_{i,0}=V_i Vi,0=Vi,对于 i = j − p , ⋯   , j i=j-p,\cdots,j i=jp,,j


V i , k = u i + p + 1 − k − u u i + p + 1 − k − u i V i − 1 , k − 1 + u − u i u i + p + 1 − k − u i V i , k − 1 , k = 1 , ⋯   , p , i = j − p + k , ⋯   , j V_{i,k}=\dfrac{u_{i+p+1-k}-u}{u_{i+p+1-k}-u_i}V_{i-1,k-1}+\dfrac{u-u_i}{u_{i+p+1-k}-u_i}V_{i,k-1},\quad k=1,\cdots,p,\quad i=j-p+k,\cdots,j Vi,k=ui+p+1kuiui+p+1kuVi1,k1+ui+p+1kuiuuiVi,k1,k=1,,p,i=jp+k,,j
其中 V i V_i Vi为控制点, p p p为B样条的幂次, P ( u ) P(u) P(u)为B样条曲线,则
P ( u ) = V j , p . P(u)=V_{j,p}. P(u)=Vj,p.

De Boor递推算法求B样条曲线上的点

u ∈ [ u j , u j + 1 ) u\in\left[u_j,u_{j+1}\right) u[uj,uj+1),则
P ( u ) = ∑ i = 0 n N i , p ( u ) V i = ∑ i = j − p j N i , p ( u ) V i = ∑ i = j − p j ( u − u i u i + p − u i N i , p − 1 ( u ) + u i + p + 1 − u u i + p + 1 − u i + 1 N i + 1 , p − 1 ( u ) ) V i = ∑ i = j − p j u − u i u i + p − u i N i , p − 1 ( u ) V i + ∑ i = j − p j u i + p + 1 − u u i + p + 1 − u i + 1 N i + 1 , p − 1 ( u ) V i = ∑ i = j − p + 1 j u − u i u i + p − u i N i , p − 1 ( u ) V i + ∑ i = j − p + 1 j u i + p − u u i + p − u i N i , p − 1 ( u ) V i − 1 = ∑ i = j − p + 1 j ( u − u i u i + p − u i V i + u i + p − u u i + p − u i V i − 1 ) N i , p − 1 ( u ) . \begin{aligned} P\left(u\right)=& \sum\limits_{i=0}^{n}N_{i,p}(u)V_i =\sum\limits_{i=j-p}^{j}N_{i,p}(u)V_i \\ =& \sum\limits_{i=j-p}^{j}\left(\dfrac{u-u_i}{u_{i+p}-u_i}N_{i,p-1}(u)+\dfrac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}}N_{i+1,p-1}(u)\right)V_i \\ =& \sum\limits_{i=j-p}^{j}\dfrac{u-u_i}{u_{i+p}-u_i}N_{i,p-1}(u)V_i +\sum\limits_{i=j-p}^{j}\dfrac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}}N_{i+1,p-1}(u)V_i \\ =& \sum\limits_{i=j-p+1}^{j}\dfrac{u-u_i}{u_{i+p}-u_i}N_{i,p-1}(u)V_i +\sum\limits_{i=j-p+1}^{j}\dfrac{u_{i+p}-u}{u_{i+p}-u_i}N_{i,p-1}(u)V_{i-1} \\ = &\sum\limits_{i=j-p+1}^{j}\left(\dfrac{u-u_i}{u_{i+p}-u_i}V_i+\dfrac{u_{i+p}-u}{u_{i+p}-u_i}V_{i-1}\right)N_{i,p-1}(u). \end{aligned} P(u)=====i=0nNi,p(u)Vi=i=jpjNi,p(u)Vii=jpj(ui+puiuuiNi,p1(u)+ui+p+1ui+1ui+p+1uNi+1,p1(u))Vii=jpjui+puiuuiNi,p1(u)Vi+i=jpjui+p+1ui+1ui+p+1uNi+1,p1(u)Vii=jp+1jui+puiuuiNi,p1(u)Vi+i=jp+1jui+puiui+puNi,p1(u)Vi1i=jp+1j(ui+puiuuiVi+ui+puiui+puVi1)Ni,p1(u).

V i , k = { V i , k = 0 u i + p + 1 − k − u u i + p + 1 − k − u i V i − 1 , k − 1 + u − u i u i + p + 1 − k − u i V i , k − 1 , k = 1 , ⋯   , p \begin{aligned} V_{i,k}=\begin{cases} V_i,\quad k=0 \\ \dfrac{u_{i+p+1-k}-u}{u_{i+p+1-k}-u_i}V_{i-1,k-1}+\dfrac{u-u_i}{u_{i+p+1-k}-u_i}V_{i,k-1},\quad k=1,\cdots,p \end{cases} \end{aligned} Vi,k=Vi,k=0ui+p+1kuiui+p+1kuVi1,k1+ui+p+1kuiuuiVi,k1,k=1,,p

P ( u ) = ∑ i = j − p + k j N i , p − k ( u ) V i , k = V j , p P\left(u\right)=\sum\limits_{i=j-p+k}^{j}N_{i,p-k}(u)V_{i,k}=V_{j,p} P(u)=i=jp+kjNi,pk(u)Vi,k=Vj,p

De Boor递推算法求B样条曲线的一阶导矢

u ∈ [ u j , u j + 1 ) u\in\left[u_j,u_{j+1}\right) u[uj,uj+1),则
P ′ ( u ) = ∑ i = 0 n N i , p ′ ( u ) V i = ∑ i = j − p j N i , p ′ ( u ) V i = ∑ i = j − p j ( p u i + p − u i N i , p − 1 ( u ) − p u i + p + 1 − u i + 1 N i + 1 , p − 1 ( u ) ) V i = ∑ i = j − p j p u i + p − u i N i , p − 1 ( u ) V i − ∑ i = j − p j p u i + p + 1 − u i + 1 N i + 1 , p − 1 ( u ) V i = ∑ i = j − p + 1 j p u i + p − u i N i , p − 1 ( u ) V i − ∑ i = j − p + 1 j p u i + p − u i N i , p − 1 ( u ) V i − 1 = p ∑ i = j − p + 1 j V i − V i − 1 u i + p − u i N i , p − 1 ( u ) . \begin{aligned} P^{'}\left(u\right)=& \sum\limits_{i=0}^{n}N^{'}_{i,p}(u)V_i=\sum\limits_{i=j-p}^{j}N^{'}_{i,p}(u)V_i \\ =&\sum\limits_{i=j-p}^{j}\left(\dfrac{p}{u_{i+p}-u_i}N_{i,p-1}(u)-\dfrac{p}{u_{i+p+1}-u_{i+1}}N_{i+1,p-1}(u)\right)V_i \\ =&\sum\limits_{i=j-p}^{j}\dfrac{p}{u_{i+p}-u_i}N_{i,p-1}(u)V_i-\sum\limits_{i=j-p}^{j}\dfrac{p}{u_{i+p+1}-u_{i+1}}N_{i+1,p-1}(u)V_i \\ =&\sum\limits_{i=j-p+1}^{j}\dfrac{p}{u_{i+p}-u_i}N_{i,p-1}(u)V_i-\sum\limits_{i=j-p+1}^{j}\dfrac{p}{u_{i+p}-u_i}N_{i,p-1}(u)V_{i-1} \\ =&p\sum\limits_{i=j-p+1}^{j}\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}N_{i,p-1}(u). \end{aligned} P(u)=====i=0nNi,p(u)Vi=i=jpjNi,p(u)Vii=jpj(ui+puipNi,p1(u)ui+p+1ui+1pNi+1,p1(u))Vii=jpjui+puipNi,p1(u)Vii=jpjui+p+1ui+1pNi+1,p1(u)Vii=jp+1jui+puipNi,p1(u)Vii=jp+1jui+puipNi,p1(u)Vi1pi=jp+1jui+puiViVi1Ni,p1(u).

Δ = ∑ i = j − p + 1 j V i − V i − 1 u i + p − u i N i , p − 1 ( u ) = ∑ i = j − p + 1 j V i − V i − 1 u i + p − u i ( u − u i u i + p − 1 − u i N i , p − 2 ( u ) + u i + p − u u i + p − u i + 1 N i + 1 , p − 2 ( u ) ) = ∑ i = j − p + 1 j V i − V i − 1 u i + p − u i u − u i u i + p − 1 − u i N i , p − 2 ( u ) + ∑ i = j − p + 1 j V i − V i − 1 u i + p − u i u i + p − u u i + p − u i + 1 N i + 1 , p − 2 ( u ) = ∑ i = j − p + 2 j V i − V i − 1 u i + p − u i u − u i u i + p − 1 − u i N i , p − 2 ( u ) + ∑ i = j − p + 2 j V i − 1 − V i − 2 u i + p − 1 − u i − 1 u i + p − 1 − u u i + p − 1 − u i N i , p − 2 ( u ) = ∑ i = j − p + 2 j ( V i − V i − 1 u i + p − u i u − u i u i + p − 1 − u i + V i − 1 − V i − 2 u i + p − 1 − u i − 1 u i + p − 1 − u u i + p − 1 − u i ) N i , p − 2 ( u ) . \begin{aligned} \Delta=& \sum\limits_{i=j-p+1}^{j}\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}N_{i,p-1}(u) \\ =& \sum\limits_{i=j-p+1}^{j}\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}\left(\dfrac{u-u_i}{u_{i+p-1}-u_i}N_{i,p-2}(u)+ \dfrac{u_{i+p}-u}{u_{i+p}-u_{i+1}}N_{i+1,p-2}(u)\right) \\ =& \sum\limits_{i=j-p+1}^{j}\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}\dfrac{u-u_i}{u_{i+p-1}-u_i}N_{i,p-2}(u) +\sum\limits_{i=j-p+1}^{j}\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}\dfrac{u_{i+p}-u}{u_{i+p}-u_{i+1}}N_{i+1,p-2}(u) \\ =& \sum\limits_{i=j-p+2}^{j}\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}\dfrac{u-u_i}{u_{i+p-1}-u_i}N_{i,p-2}(u) +\sum\limits_{i=j-p+2}^{j}\dfrac{V_{i-1}-V_{i-2}}{u_{i+p-1}-u_{i-1}}\dfrac{u_{i+p-1}-u}{u_{i+p-1}-u_{i}}N_{i,p-2}(u) \\ =& \sum\limits_{i=j-p+2}^{j}\left(\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}\dfrac{u-u_i}{u_{i+p-1}-u_i}+ \dfrac{V_{i-1}-V_{i-2}}{u_{i+p-1}-u_{i-1}}\dfrac{u_{i+p-1}-u}{u_{i+p-1}-u_i}\right)N_{i,p-2}(u). \end{aligned} Δ=====i=jp+1jui+puiViVi1Ni,p1(u)i=jp+1jui+puiViVi1(ui+p1uiuuiNi,p2(u)+ui+pui+1ui+puNi+1,p2(u))i=jp+1jui+puiViVi1ui+p1uiuuiNi,p2(u)+i=jp+1jui+puiViVi1ui+pui+1ui+puNi+1,p2(u)i=jp+2jui+puiViVi1ui+p1uiuuiNi,p2(u)+i=jp+2jui+p1ui1Vi1Vi2ui+p1uiui+p1uNi,p2(u)i=jp+2j(ui+puiViVi1ui+p1uiuui+ui+p1ui1Vi1Vi2ui+p1uiui+p1u)Ni,p2(u).
因此
P ′ ( u ) = p ∑ i = j − p + 1 j V i − V i − 1 u i + p − u i N i , p − 1 ( u ) = p ∑ i = j − p + 2 j ( V i − V i − 1 u i + p − u i u − u i u i + p − 1 − u i + V i − 1 − V i − 2 u i + p − 1 − u i − 1 u i + p − 1 − u u i + p − 1 − u i ) N i , p − 2 ( u ) . \begin{aligned} P^{'}\left(u\right)=& p\sum\limits_{i=j-p+1}^{j}\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}N_{i,p-1}(u) \\ =& p\sum\limits_{i=j-p+2}^{j}\left(\dfrac{V_i-V_{i-1}}{u_{i+p}-u_i}\dfrac{u-u_i}{u_{i+p-1}-u_i}+ \dfrac{V_{i-1}-V_{i-2}}{u_{i+p-1}-u_{i-1}}\dfrac{u_{i+p-1}-u}{u_{i+p-1}-u_i}\right)N_{i,p-2}(u). \end{aligned} P(u)==pi=jp+1jui+puiViVi1Ni,p1(u)pi=jp+2j(ui+puiViVi1ui+p1uiuui+ui+p1ui1Vi1Vi2ui+p1uiui+p1u)Ni,p2(u).

Q i , k = { V i − V i − 1 u i + p − u i , k = 1 u i + p + 1 − k − u u i + p + 1 − k − u i Q i − 1 , k − 1 + u − u i u i + p + 1 − k − u i Q i , k − 1 , k = 2 , ⋯   , p \begin{aligned} Q_{i,k}=\begin{cases} \dfrac{V_i-V_{i-1}}{u_{i+p}-u_i},\quad k=1 \\ \dfrac{u_{i+p+1-k}-u}{u_{i+p+1-k}-u_i}Q_{i-1,k-1} +\dfrac{u-u_i}{u_{i+p+1-k}-u_i}Q_{i,k-1},\quad k=2,\cdots,p \end{cases} \end{aligned} Qi,k=ui+puiViVi1,k=1ui+p+1kuiui+p+1kuQi1,k1+ui+p+1kuiuuiQi,k1,k=2,,p
下面用数学归纳法证明
Q i , k = V i , k − 1 − V i − 1 , k − 1 u i + p + 1 − k − u i , k = 1 , ⋯   , p . Q_{i,k}=\dfrac{V_{i,k-1}-V_{i-1,k-1}}{u_{i+p+1-k}-u_i},\quad k=1,\cdots,p. Qi,k=ui+p+1kuiVi,k1Vi1,k1,k=1,,p.
k = 1 k=1 k=1时, Q i , k = V i , k − 1 − V i − 1 , k − 1 u i + p + 1 − k − u i Q_{i,k}=\dfrac{V_{i,k-1}-V_{i-1,k-1}}{u_{i+p+1-k}-u_i} Qi,k=ui+p+1kuiVi,k1Vi1,k1,于是有
Q i , k + 1 = u i + p − k − u u i + p − k − u i Q i − 1 , k + u − u i u i + p − k − u i Q i , k = u i + p − k − u u i + p − k − u i V i − 1 , k − 1 − V i − 2 , k − 1 u i + p − k − u i + u − u i u i + p − k − u i V i , k − 1 − V i − 1 , k − 1 u i + p + 1 − k − u i = 1 u i + p − k − u i [ u i + p − k − u u i + p − k − u i ( V i − 1 , k − 1 − V i − 2 , k − 1 ) + u − u i u i + p + 1 − k − u i ( V i , k − 1 − V i − 1 , k − 1 ) ] . \begin{aligned} Q_{i,k+1}=& \dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}Q_{i-1,k}+ \dfrac{u-u_i}{u_{i+p-k}-u_i}Q_{i,k} \\ =& \dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}\dfrac{V_{i-1,k-1}-V_{i-2,k-1}}{u_{i+p-k}-u_i} +\dfrac{u-u_i}{u_{i+p-k}-u_i}\dfrac{V_{i,k-1}-V_{i-1,k-1}}{u_{i+p+1-k}-u_i} \\ =& \dfrac{1}{u_{i+p-k}-u_i}\left[\dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}\left(V_{i-1,k-1}-V_{i-2,k-1}\right) +\dfrac{u-u_i}{u_{i+p+1-k}-u_i}\left(V_{i,k-1}-V_{i-1,k-1}\right)\right]. \end{aligned} Qi,k+1===ui+pkuiui+pkuQi1,k+ui+pkuiuuiQi,kui+pkuiui+pkuui+pkuiVi1,k1Vi2,k1+ui+pkuiuuiui+p+1kuiVi,k1Vi1,k1ui+pkui1[ui+pkuiui+pku(Vi1,k1Vi2,k1)+ui+p+1kuiuui(Vi,k1Vi1,k1)].

V i , k − V i − 1 , k = u i + p + 1 − k − u u i + p + 1 − k − u i V i − 1 , k − 1 + u − u i u i + p + 1 − k − u i V i , k − 1 − u i + p − k − u u i + p − k − u i V i − 2 , k − 1 − u − u i u i + p − k − u i V i − 1 , k − 1 = ( V i − 1 , k − 1 + u i − u u i + p + 1 − k − u i V i − 1 , k − 1 ) − u − u i u i + p − k − u i V i − 1 , k − 1 + u − u i u i + p + 1 − k − u i V i , k − 1 − u i + p − k − u u i + p − k − u i V i − 2 , k − 1 = ( V i − 1 , k − 1 − u − u i u i + p − k − u i V i − 1 , k − 1 ) + u i − u u i + p + 1 − k − u i V i − 1 , k − 1 + u − u i u i + p + 1 − k − u i V i , k − 1 − u i + p − k − u u i + p − k − u i V i − 2 , k − 1 = u i + p − k − u u i + p − k − u i V i − 1 , k − 1 − u − u i u i + p + 1 − k − u i V i − 1 , k − 1 + u − u i u i + p + 1 − k − u i V i , k − 1 − u i + p − k − u u i + p − k − u i V i − 2 , k − 1 = u i + p − k − u u i + p − k − u i ( V i − 1 , k − 1 − V i − 2 , k − 1 ) + u − u i u i + p + 1 − k − u i ( V i , k − 1 − V i − 1 , k − 1 ) . \begin{aligned} V_{i,k}-V_{i-1,k}=& \dfrac{u_{i+p+1-k}-u}{u_{i+p+1-k}-u_i}V_{i-1,k-1} +\dfrac{u-u_i}{u_{i+p+1-k}-u_i}V_{i,k-1} \\ &-\dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}V_{i-2,k-1} -\dfrac{u-u_i}{u_{i+p-k}-u_i}V_{i-1,k-1} \\ =& \left(V_{i-1,k-1} +\dfrac{u_i-u}{u_{i+p+1-k}-u_i}V_{i-1,k-1}\right) -\dfrac{u-u_i}{u_{i+p-k}-u_i}V_{i-1,k-1} \\ &+\dfrac{u-u_i}{u_{i+p+1-k}-u_i}V_{i,k-1} -\dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}V_{i-2,k-1} \\ =& \left(V_{i-1,k-1} -\dfrac{u-u_i}{u_{i+p-k}-u_i}V_{i-1,k-1}\right) +\dfrac{u_i-u}{u_{i+p+1-k}-u_i}V_{i-1,k-1} \\ &+\dfrac{u-u_i}{u_{i+p+1-k}-u_i}V_{i,k-1} -\dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}V_{i-2,k-1} \\ =& \dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}V_{i-1,k-1} -\dfrac{u-u_i}{u_{i+p+1-k}-u_i}V_{i-1,k-1} \\ &+\dfrac{u-u_i}{u_{i+p+1-k}-u_i}V_{i,k-1} -\dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}V_{i-2,k-1} \\ =& \dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}\left(V_{i-1,k-1}-V_{i-2,k-1}\right) +\dfrac{u-u_i}{u_{i+p+1-k}-u_i}\left(V_{i,k-1}-V_{i-1,k-1}\right). \end{aligned} Vi,kVi1,k=====ui+p+1kuiui+p+1kuVi1,k1+ui+p+1kuiuuiVi,k1ui+pkuiui+pkuVi2,k1ui+pkuiuuiVi1,k1(Vi1,k1+ui+p+1kuiuiuVi1,k1)ui+pkuiuuiVi1,k1+ui+p+1kuiuuiVi,k1ui+pkuiui+pkuVi2,k1(Vi1,k1ui+pkuiuuiVi1,k1)+ui+p+1kuiuiuVi1,k1+ui+p+1kuiuuiVi,k1ui+pkuiui+pkuVi2,k1ui+pkuiui+pkuVi1,k1ui+p+1kuiuuiVi1,k1+ui+p+1kuiuuiVi,k1ui+pkuiui+pkuVi2,k1ui+pkuiui+pku(Vi1,k1Vi2,k1)+ui+p+1kuiuui(Vi,k1Vi1,k1).
因此,可得
Q i , k + 1 = V i , k − V i − 1 , k u i + p − k − u i . Q_{i,k+1}=\dfrac{V_{i,k}-V_{i-1,k}}{u_{i+p-k}-u_i}. Qi,k+1=ui+pkuiVi,kVi1,k.
证毕。

利用上面的结果,可以得到
P ′ ( u ) = p ∑ i = j − p + k j N i , p − k ( u ) Q i , k = p Q j , p = p V j , p − 1 − V j − 1 , p − 1 u j + 1 − u j . P^{'}\left(u\right)=p\sum\limits_{i=j-p+k}^{j}N_{i,p-k}(u)Q_{i,k}=pQ_{j,p}=p\dfrac{V_{j,p-1}-V_{j-1,p-1}}{u_{j+1}-u_j}. P(u)=pi=jp+kjNi,pk(u)Qi,k=pQj,p=puj+1ujVj,p1Vj1,p1.

De Boor递推算法求B样条曲线的二阶导矢

u ∈ [ u j , u j + 1 ) u\in\left[u_j,u_{j+1}\right) u[uj,uj+1),则
P ′ ′ ( u ) = ( P ( u ) ) ′ = ( ∑ i = j − p j N i , p ′ ( u ) V i ) ′ = ( ∑ i = j − p j p V i u i + p − u i N i , p − 1 ( u ) − ∑ i = j − p j p V i u i + p + 1 − u i + 1 N i + 1 , p − 1 ( u ) ) ′ = ∑ i = j − p j p V i u i + p − u i N i , p − 1 ′ ( u ) − ∑ i = j − p j p V i u i + p + 1 − u i + 1 N i + 1 , p − 1 ′ ( u ) = ∑ i = j − p j p V i u i + p − u i ( p − 1 u i + p − 1 − u i N i , p − 2 ( u ) − p − 1 u i + p − u i + 1 N i + 1 , p − 2 ( u ) ) − ∑ i = j − p j p V i u i + p + 1 − u i + 1 ( p − 1 u i + p − u i + 1 N i + 1 , p − 2 ( u ) − p − 1 u i + p + 1 − u i + 2 N i + 2 , p − 2 ( u ) ) = p ( p − 1 ) ∑ i = j − p j [ V i u i + p − u i 1 u i + p − 1 − u i N i , p − 2 ( u ) − V i u i + p − u i 1 u i + p − u i + 1 N i + 1 , p − 2 ( u ) − V i u i + p + 1 − u i + 1 1 u i + p − u i + 1 N i + 1 , p − 2 ( u ) + V i u i + p + 1 − u i + 1 1 u i + p + 1 − u i + 2 N i + 2 , p − 2 ( u ) ] . \begin{aligned} P^{''}\left(u\right)=& \left(P\left(u\right)\right)^{'} =\left(\sum\limits_{i=j-p}^{j}N^{'}_{i,p}(u)V_i\right)^{'} \\ =& \left(\sum\limits_{i=j-p}^{j}\dfrac{pV_i}{u_{i+p}-u_i}N_{i,p-1}(u) -\sum\limits_{i=j-p}^{j}\dfrac{pV_i}{u_{i+p+1}-u_{i+1}}N_{i+1,p-1}(u)\right)^{'} \\ =& \sum\limits_{i=j-p}^{j}\dfrac{pV_i}{u_{i+p}-u_i}N^{'}_{i,p-1}(u) -\sum\limits_{i=j-p}^{j}\dfrac{pV_i}{u_{i+p+1}-u_{i+1}}N^{'}_{i+1,p-1}(u) \\ =& \sum\limits_{i=j-p}^{j}\dfrac{pV_i}{u_{i+p}-u_i}\left(\dfrac{p-1}{u_{i+p-1}-u_i}N_{i,p-2}(u) -\dfrac{p-1}{u_{i+p}-u_{i+1}}N_{i+1,p-2}(u)\right) \\ &-\sum\limits_{i=j-p}^{j}\dfrac{pV_i}{u_{i+p+1}-u_{i+1}}\left(\dfrac{p-1}{u_{i+p}-u_{i+1}}N_{i+1,p-2}(u) -\dfrac{p-1}{u_{i+p+1}-u_{i+2}}N_{i+2,p-2}(u)\right) \\ =& p\left(p-1\right)\sum\limits_{i=j-p}^{j}\left[\dfrac{V_i}{u_{i+p}-u_i}\dfrac{1}{u_{i+p-1}-u_i}N_{i,p-2}(u) -\dfrac{V_i}{u_{i+p}-u_i}\dfrac{1}{u_{i+p}-u_{i+1}}N_{i+1,p-2}(u)\right. \\ &\left.-\dfrac{V_i}{u_{i+p+1}-u_{i+1}}\dfrac{1}{u_{i+p}-u_{i+1}}N_{i+1,p-2}(u) +\dfrac{V_i}{u_{i+p+1}-u_{i+1}}\dfrac{1}{u_{i+p+1}-u_{i+2}}N_{i+2,p-2}(u)\right]. \end{aligned} P(u)=====(P(u))=(i=jpjNi,p(u)Vi)(i=jpjui+puipViNi,p1(u)i=jpjui+p+1ui+1pViNi+1,p1(u))i=jpjui+puipViNi,p1(u)i=jpjui+p+1ui+1pViNi+1,p1(u)i=jpjui+puipVi(ui+p1uip1Ni,p2(u)ui+pui+1p1Ni+1,p2(u))i=jpjui+p+1ui+1pVi(ui+pui+1p1Ni+1,p2(u)ui+p+1ui+2p1Ni+2,p2(u))p(p1)i=jpj[ui+puiViui+p1ui1Ni,p2(u)ui+puiViui+pui+11Ni+1,p2(u)ui+p+1ui+1Viui+pui+11Ni+1,p2(u)+ui+p+1ui+1Viui+p+1ui+21Ni+2,p2(u)].
于是
P ′ ′ ( u ) p ( p − 1 ) = ∑ i = j − p j V i ( u i + p − u i ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) − ∑ i = j − p j V i ( u i + p − u i ) ( u i + p − u i + 1 ) N i + 1 , p − 2 ( u ) − ∑ i = j − p j V i ( u i + p + 1 − u i + 1 ) ( u i + p − u i + 1 ) N i + 1 , p − 2 ( u ) + ∑ i = j − p j V i ( u i + p + 1 − u i + 1 ) ( u i + p + 1 − u i + 2 ) N i + 2 , p − 2 ( u ) = ∑ i = j − p + 2 j V i ( u i + p − u i ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) − ∑ i = j − p + 1 j + 1 V i − 1 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) − ∑ i = j − p + 1 j + 1 V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) + ∑ i = j − p + 2 j + 2 V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) = ∑ i = j − p + 2 j V i ( u i + p − u i ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) − ∑ i = j − p + 2 j V i − 1 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) − ∑ i = j − p + 2 j V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) + ∑ i = j − p + 2 j V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) = ∑ i = j − p + 2 j N i , p − 2 ( u ) [ V i − V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) − V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) ] . \begin{aligned} \dfrac{P^{''}\left(u\right)}{p\left(p-1\right)}=& \sum\limits_{i=j-p}^{j}\dfrac{V_i}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ &-\sum\limits_{i=j-p}^{j}\dfrac{V_i}{\left(u_{i+p}-u_i\right)\left(u_{i+p}-u_{i+1}\right)}N_{i+1,p-2}(u) \\ &-\sum\limits_{i=j-p}^{j}\dfrac{V_i}{\left(u_{i+p+1}-u_{i+1}\right)\left(u_{i+p}-u_{i+1}\right)}N_{i+1,p-2}(u) \\ &+\sum\limits_{i=j-p}^{j}\dfrac{V_i}{\left(u_{i+p+1}-u_{i+1}\right)\left(u_{i+p+1}-u_{i+2}\right)}N_{i+2,p-2}(u) \\ =& \sum\limits_{i=j-p+2}^{j}\dfrac{V_i}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ &-\sum\limits_{i=j-p+1}^{j+1}\dfrac{V_{i-1}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ &-\sum\limits_{i=j-p+1}^{j+1}\dfrac{V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ &+\sum\limits_{i=j-p+2}^{j+2}\dfrac{V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ =& \sum\limits_{i=j-p+2}^{j}\dfrac{V_i}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ &-\sum\limits_{i=j-p+2}^{j}\dfrac{V_{i-1}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ &-\sum\limits_{i=j-p+2}^{j}\dfrac{V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ &+\sum\limits_{i=j-p+2}^{j}\dfrac{V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ =& \sum\limits_{i=j-p+2}^{j}N_{i,p-2}(u)\left[\dfrac{V_i-V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)} -\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}\right]. \end{aligned} p(p1)P(u)====i=jpj(ui+pui)(ui+p1ui)ViNi,p2(u)i=jpj(ui+pui)(ui+pui+1)ViNi+1,p2(u)i=jpj(ui+p+1ui+1)(ui+pui+1)ViNi+1,p2(u)+i=jpj(ui+p+1ui+1)(ui+p+1ui+2)ViNi+2,p2(u)i=jp+2j(ui+pui)(ui+p1ui)ViNi,p2(u)i=jp+1j+1(ui+p1ui1)(ui+p1ui)Vi1Ni,p2(u)i=jp+1j+1(ui+pui)(ui+p1ui)Vi1Ni,p2(u)+i=jp+2j+2(ui+p1ui1)(ui+p1ui)Vi2Ni,p2(u)i=jp+2j(ui+pui)(ui+p1ui)ViNi,p2(u)i=jp+2j(ui+p1ui1)(ui+p1ui)Vi1Ni,p2(u)i=jp+2j(ui+pui)(ui+p1ui)Vi1Ni,p2(u)+i=jp+2j(ui+p1ui1)(ui+p1ui)Vi2Ni,p2(u)i=jp+2jNi,p2(u)[(ui+pui)(ui+p1ui)ViVi1(ui+p1ui1)(ui+p1ui)Vi1Vi2].

Δ 1 = ∑ i = j − p + 2 j V i − V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) = ∑ i = j − p + 2 j V i − V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) ( u − u i u i + p − 2 − u i N i , p − 3 ( u ) + u i + p − 1 − u u i + p − 1 − u i + 1 N i + 1 , p − 3 ( u ) ) = ∑ i = j − p + 3 j V i − V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) u − u i u i + p − 2 − u i N i , p − 3 ( u ) + ∑ i = j − p + 3 j V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 2 − u i − 1 ) u i + p − 2 − u u i + p − 2 − u i N i , p − 3 ( u ) . \begin{aligned} \Delta_1=& \sum\limits_{i=j-p+2}^{j}\dfrac{V_i-V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ =&\sum\limits_{i=j-p+2}^{j}\dfrac{V_i-V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)}\left(\dfrac{u-u_i}{u_{i+p-2}-u_i}N_{i,p-3}(u) +\dfrac{u_{i+p-1}-u}{u_{i+p-1}-u_{i+1}}N_{i+1,p-3}(u)\right) \\ =&\sum\limits_{i=j-p+3}^{j}\dfrac{V_i-V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)}\dfrac{u-u_i}{u_{i+p-2}-u_i}N_{i,p-3}(u) \\ &+\sum\limits_{i=j-p+3}^{j}\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-2}-u_{i-1}\right)}\dfrac{u_{i+p-2}-u}{u_{i+p-2}-u_i}N_{i,p-3}(u). \end{aligned} Δ1===i=jp+2j(ui+pui)(ui+p1ui)ViVi1Ni,p2(u)i=jp+2j(ui+pui)(ui+p1ui)ViVi1(ui+p2uiuuiNi,p3(u)+ui+p1ui+1ui+p1uNi+1,p3(u))i=jp+3j(ui+pui)(ui+p1ui)ViVi1ui+p2uiuuiNi,p3(u)+i=jp+3j(ui+p1ui1)(ui+p2ui1)Vi1Vi2ui+p2uiui+p2uNi,p3(u).

Δ 2 = ∑ i = j − p + 2 j V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) N i , p − 2 ( u ) = ∑ i = j − p + 2 j V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) ( u − u i u i + p − 2 − u i N i , p − 3 ( u ) + u i + p − 1 − u u i + p − 1 − u i + 1 N i + 1 , p − 3 ( u ) ) = ∑ i = j − p + 3 j V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) u − u i u i + p − 2 − u i N i , p − 3 ( u ) + ∑ i = j − p + 3 j V i − 2 − V i − 3 ( u i + p − 2 − u i − 2 ) ( u i + p − 2 − u i − 1 ) u i + p − 2 − u u i + p − 2 − u i N i , p − 3 ( u ) . \begin{aligned} \Delta_2=& \sum\limits_{i=j-p+2}^{j}\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}N_{i,p-2}(u) \\ =&\sum\limits_{i=j-p+2}^{j}\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)} \left(\dfrac{u-u_i}{u_{i+p-2}-u_i}N_{i,p-3}(u) +\dfrac{u_{i+p-1}-u}{u_{i+p-1}-u_{i+1}}N_{i+1,p-3}(u)\right) \\ =&\sum\limits_{i=j-p+3}^{j}\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}\dfrac{u-u_i}{u_{i+p-2}-u_i}N_{i,p-3}(u) \\ &+\sum\limits_{i=j-p+3}^{j}\dfrac{V_{i-2}-V_{i-3}}{\left(u_{i+p-2}-u_{i-2}\right)\left(u_{i+p-2}-u_{i-1}\right)}\dfrac{u_{i+p-2}-u}{u_{i+p-2}-u_i}N_{i,p-3}(u). \end{aligned} Δ2===i=jp+2j(ui+p1ui1)(ui+p1ui)Vi1Vi2Ni,p2(u)i=jp+2j(ui+p1ui1)(ui+p1ui)Vi1Vi2(ui+p2uiuuiNi,p3(u)+ui+p1ui+1ui+p1uNi+1,p3(u))i=jp+3j(ui+p1ui1)(ui+p1ui)Vi1Vi2ui+p2uiuuiNi,p3(u)+i=jp+3j(ui+p2ui2)(ui+p2ui1)Vi2Vi3ui+p2uiui+p2uNi,p3(u).

因此,得到
P ′ ′ ( u ) p ( p − 1 ) = ∑ i = j − p + 2 j N i , p − 2 ( u ) [ V i − V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) − V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) ] = ∑ i = j − p + 3 j N i , p − 3 ( u ) ⋅ { [ V i − V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) − V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) ] u − u i u i + p − 2 − u i + [ V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 2 − u i − 1 ) − V i − 2 − V i − 3 ( u i + p − 2 − u i − 2 ) ( u i + p − 2 − u i − 1 ) ] u i + p − 2 − u u i + p − 2 − u i } . \begin{aligned} \dfrac{P^{''}\left(u\right)}{p\left(p-1\right)}=& \sum\limits_{i=j-p+2}^{j}N_{i,p-2}(u)\left[\dfrac{V_i-V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)} -\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}\right] \\ =&\sum\limits_{i=j-p+3}^{j}N_{i,p-3}(u) \cdot \\ &\left\{\left[\dfrac{V_i-V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)} -\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)}\right]\dfrac{u-u_i}{u_{i+p-2}-u_i}\right. \\ &\left. +\left[\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-2}-u_{i-1}\right)} -\dfrac{V_{i-2}-V_{i-3}}{\left(u_{i+p-2}-u_{i-2}\right)\left(u_{i+p-2}-u_{i-1}\right)}\right]\dfrac{u_{i+p-2}-u}{u_{i+p-2}-u_i}\right\}. \end{aligned} p(p1)P(u)==i=jp+2jNi,p2(u)[(ui+pui)(ui+p1ui)ViVi1(ui+p1ui1)(ui+p1ui)Vi1Vi2]i=jp+3jNi,p3(u){[(ui+pui)(ui+p1ui)ViVi1(ui+p1ui1)(ui+p1ui)Vi1Vi2]ui+p2uiuui+[(ui+p1ui1)(ui+p2ui1)Vi1Vi2(ui+p2ui2)(ui+p2ui1)Vi2Vi3]ui+p2uiui+p2u}.

Q i , k = { V i − V i − 1 ( u i + p − u i ) ( u i + p − 1 − u i ) − V i − 1 − V i − 2 ( u i + p − 1 − u i − 1 ) ( u i + p − 1 − u i ) , k = 2 u i + p + 1 − k − u u i + p + 1 − k − u i Q i − 1 , k − 1 + u − u i u i + p + 1 − k − u i Q i , k − 1 , k = 3 , ⋯   , p \begin{aligned} Q_{i,k}=\begin{cases} \dfrac{V_i-V_{i-1}}{\left(u_{i+p}-u_i\right)\left(u_{i+p-1}-u_i\right)} -\dfrac{V_{i-1}-V_{i-2}}{\left(u_{i+p-1}-u_{i-1}\right)\left(u_{i+p-1}-u_i\right)},\quad k=2 \\ \dfrac{u_{i+p+1-k}-u}{u_{i+p+1-k}-u_i}Q_{i-1,k-1} +\dfrac{u-u_i}{u_{i+p+1-k}-u_i}Q_{i,k-1},\quad k=3,\cdots,p \end{cases} \end{aligned} Qi,k=(ui+pui)(ui+p1ui)ViVi1(ui+p1ui1)(ui+p1ui)Vi1Vi2,k=2ui+p+1kuiui+p+1kuQi1,k1+ui+p+1kuiuuiQi,k1,k=3,,p
下面用数学归纳法证明
Q i , k = V i , k − 2 − V i − 1 , k − 2 ( u i + p + 2 − k − u i ) ( u i + p + 1 − k − u i ) − V i − 1 , k − 2 − V i − 2 , k − 2 ( u i + p + 1 − k − u i − 1 ) ( u i + p + 1 − k − u i ) , k = 2 , ⋯   , p Q_{i,k}=\dfrac{V_{i,k-2}-V_{i-1,k-2}}{\left(u_{i+p+2-k}-u_i\right)\left(u_{i+p+1-k}-u_i\right)} -\dfrac{V_{i-1,k-2}-V_{i-2,k-2}}{\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p+1-k}-u_i\right)},\quad k=2,\cdots,p Qi,k=(ui+p+2kui)(ui+p+1kui)Vi,k2Vi1,k2(ui+p+1kui1)(ui+p+1kui)Vi1,k2Vi2,k2,k=2,,p
k = 2 k=2 k=2时,
Q i , k = V i , k − 2 − V i − 1 , k − 2 ( u i + p + 2 − k − u i ) ( u i + p + 1 − k − u i ) − V i − 1 , k − 2 − V i − 2 , k − 2 ( u i + p + 1 − k − u i − 1 ) ( u i + p + 1 − k − u i ) . Q_{i,k}=\dfrac{V_{i,k-2}-V_{i-1,k-2}}{\left(u_{i+p+2-k}-u_i\right)\left(u_{i+p+1-k}-u_i\right)} -\dfrac{V_{i-1,k-2}-V_{i-2,k-2}}{\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p+1-k}-u_i\right)}. Qi,k=(ui+p+2kui)(ui+p+1kui)Vi,k2Vi1,k2(ui+p+1kui1)(ui+p+1kui)Vi1,k2Vi2,k2.
于是有
Q i , k + 1 = u i + p − k − u u i + p − k − u i Q i − 1 , k + u − u i u i + p − k − u i Q i , k = u i + p − k − u u i + p − k − u i [ V i − 1 , k − 2 − V i − 2 , k − 2 ( u i + p + 1 − k − u i − 1 ) ( u i + p − k − u i − 1 ) − V i − 2 , k − 2 − V i − 3 , k − 2 ( u i + p − k − u i − 2 ) ( u i + p − k − u i − 1 ) ] + u − u i u i + p − k − u i [ V i , k − 2 − V i − 1 , k − 2 ( u i + p + 2 − k − u i ) ( u i + p + 1 − k − u i ) − V i − 1 , k − 2 − V i − 2 , k − 2 ( u i + p + 1 − k − u i − 1 ) ( u i + p + 1 − k − u i ) ] = u i + p − k − u ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) ( u i + p − k − u i − 1 ) ( V i − 1 , k − 2 − V i − 2 , k − 2 ) − u i + p − k − u ( u i + p − k − u i ) ( u i + p − k − u i − 2 ) ( u i + p − k − u i − 1 ) ( V i − 2 , k − 2 − V i − 3 , k − 2 ) + u − u i ( u i + p − k − u i ) ( u i + p + 2 − k − u i ) ( u i + p + 1 − k − u i ) ( V i , k − 2 − V i − 1 , k − 2 ) − u − u i ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) ( u i + p + 1 − k − u i ) ( V i − 1 , k − 2 − V i − 2 , k − 2 ) . \begin{aligned} Q_{i,k+1}=& \dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i}Q_{i-1,k} +\dfrac{u-u_i}{u_{i+p-k}-u_i}Q_{i,k} \\ =&\dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_i} \left[\dfrac{V_{i-1,k-2}-V_{i-2,k-2}}{\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p-k}-u_{i-1}\right)} -\dfrac{V_{i-2,k-2}-V_{i-3,k-2}}{\left(u_{i+p-k}-u_{i-2}\right)\left(u_{i+p-k}-u_{i-1}\right)}\right] \\ &+\dfrac{u-u_i}{u_{i+p-k}-u_i}\left[\dfrac{V_{i,k-2}-V_{i-1,k-2}}{\left(u_{i+p+2-k}-u_i\right)\left(u_{i+p+1-k}-u_i\right)} -\dfrac{V_{i-1,k-2}-V_{i-2,k-2}}{\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p+1-k}-u_i\right)}\right] \\ =& \dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p-k}-u_{i-1}\right)}\left(V_{i-1,k-2}-V_{i-2,k-2}\right) \\ &-\dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p-k}-u_{i-2}\right)\left(u_{i+p-k}-u_{i-1}\right)}\left(V_{i-2,k-2}-V_{i-3,k-2}\right) \\ &+\dfrac{u-u_i}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+2-k}-u_i\right)\left(u_{i+p+1-k}-u_i\right)}\left(V_{i,k-2}-V_{i-1,k-2}\right) \\ &-\dfrac{u-u_i}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p+1-k}-u_i\right)}\left(V_{i-1,k-2}-V_{i-2,k-2}\right). \end{aligned} Qi,k+1===ui+pkuiui+pkuQi1,k+ui+pkuiuuiQi,kui+pkuiui+pku[(ui+p+1kui1)(ui+pkui1)Vi1,k2Vi2,k2(ui+pkui2)(ui+pkui1)Vi2,k2Vi3,k2]+ui+pkuiuui[(ui+p+2kui)(ui+p+1kui)Vi,k2Vi1,k2(ui+p+1kui1)(ui+p+1kui)Vi1,k2Vi2,k2](ui+pkui)(ui+p+1kui1)(ui+pkui1)ui+pku(Vi1,k2Vi2,k2)(ui+pkui)(ui+pkui2)(ui+pkui1)ui+pku(Vi2,k2Vi3,k2)+(ui+pkui)(ui+p+2kui)(ui+p+1kui)uui(Vi,k2Vi1,k2)(ui+pkui)(ui+p+1kui1)(ui+p+1kui)uui(Vi1,k2Vi2,k2).

Δ = V i , k − 1 − V i − 1 , k − 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) − V i − 1 , k − 1 − V i − 2 , k − 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) = V i , k − 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) − V i − 1 , k − 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) − V i − 1 , k − 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) + V i − 2 , k − 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) = 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) [ u i + p + 2 − k − u u i + p + 2 − k − u i V i − 1 , k − 2 + u − u i u i + p + 2 − k − u i V i , k − 2 ] − 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) [ u i + p + 1 − k − u u i + p + 1 − k − u i − 1 V i − 2 , k − 2 + u − u i − 1 u i + p + 1 − k − u i − 1 V i − 1 , k − 2 ] − 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) [ u i + p + 1 − k − u u i + p + 1 − k − u i − 1 V i − 2 , k − 2 + u − u i − 1 u i + p + 1 − k − u i − 1 V i − 1 , k − 2 ] + 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) [ u i + p − k − u u i + p − k − u i − 2 V i − 3 , k − 2 + u − u i − 2 u i + p − k − u i − 2 V i − 2 , k − 2 ] = u i + p + 2 − k − u ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 2 − k − u i ) V i − 1 , k − 2 + u − u i ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 2 − k − u i ) V i , k − 2 − u i + p + 1 − k − u ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) V i − 2 , k − 2 − u − u i − 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) V i − 1 , k − 2 − u i + p + 1 − k − u ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) V i − 2 , k − 2 − u − u i − 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) V i − 1 , k − 2 + u i + p − k − u ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p − k − u i − 2 ) V i − 3 , k − 2 + u − u i − 2 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p − k − u i − 2 ) V i − 2 , k − 2 . \begin{aligned} \Delta=& \dfrac{V_{i,k-1}-V_{i-1,k-1}}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)} -\dfrac{V_{i-1,k-1}-V_{i-2,k-1}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)} \\ =& \dfrac{V_{i,k-1}}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)} -\dfrac{V_{i-1,k-1}}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)} \\ &-\dfrac{V_{i-1,k-1}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)} +\dfrac{V_{i-2,k-1}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)} \\ =&\dfrac{1}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)} \left[\dfrac{u_{i+p+2-k}-u}{u_{i+p+2-k}-u_i}V_{i-1,k-2} +\dfrac{u-u_i}{u_{i+p+2-k}-u_i}V_{i,k-2}\right] \\ &-\dfrac{1}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)} \left[\dfrac{u_{i+p+1-k}-u}{u_{i+p+1-k}-u_{i-1}}V_{i-2,k-2} +\dfrac{u-u_{i-1}}{u_{i+p+1-k}-u_{i-1}}V_{i-1,k-2}\right] \\ &-\dfrac{1}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)} \left[\dfrac{u_{i+p+1-k}-u}{u_{i+p+1-k}-u_{i-1}}V_{i-2,k-2} +\dfrac{u-u_{i-1}}{u_{i+p+1-k}-u_{i-1}}V_{i-1,k-2}\right] \\ &+\dfrac{1}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)} \left[\dfrac{u_{i+p-k}-u}{u_{i+p-k}-u_{i-2}}V_{i-3,k-2} +\dfrac{u-u_{i-2}}{u_{i+p-k}-u_{i-2}}V_{i-2,k-2}\right] \\ =& \dfrac{u_{i+p+2-k}-u}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+2-k}-u_i\right)}V_{i-1,k-2} \\ &+\dfrac{u-u_i}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+2-k}-u_i\right)}V_{i,k-2} \\ &-\dfrac{u_{i+p+1-k}-u}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)}V_{i-2,k-2} \\ &-\dfrac{u-u_{i-1}}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)}V_{i-1,k-2} \\ &-\dfrac{u_{i+p+1-k}-u}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)}V_{i-2,k-2} \\ &-\dfrac{u-u_{i-1}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)}V_{i-1,k-2} \\ &+\dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p-k}-u_{i-2}\right)}V_{i-3,k-2} \\ &+\dfrac{u-u_{i-2}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p-k}-u_{i-2}\right)}V_{i-2,k-2}. \end{aligned} Δ====(ui+p+1kui)(ui+pkui)Vi,k1Vi1,k1(ui+pkui1)(ui+pkui)Vi1,k1Vi2,k1(ui+p+1kui)(ui+pkui)Vi,k1(ui+p+1kui)(ui+pkui)Vi1,k1(ui+pkui1)(ui+pkui)Vi1,k1+(ui+pkui1)(ui+pkui)Vi2,k1(ui+p+1kui)(ui+pkui)1[ui+p+2kuiui+p+2kuVi1,k2+ui+p+2kuiuuiVi,k2](ui+p+1kui)(ui+pkui)1[ui+p+1kui1ui+p+1kuVi2,k2+ui+p+1kui1uui1Vi1,k2](ui+pkui1)(ui+pkui)1[ui+p+1kui1ui+p+1kuVi2,k2+ui+p+1kui1uui1Vi1,k2]+(ui+pkui1)(ui+pkui)1[ui+pkui2ui+pkuVi3,k2+ui+pkui2uui2Vi2,k2](ui+p+1kui)(ui+pkui)(ui+p+2kui)ui+p+2kuVi1,k2+(ui+p+1kui)(ui+pkui)(ui+p+2kui)uuiVi,k2(ui+p+1kui)(ui+pkui)(ui+p+1kui1)ui+p+1kuVi2,k2(ui+p+1kui)(ui+pkui)(ui+p+1kui1)uui1Vi1,k2(ui+pkui1)(ui+pkui)(ui+p+1kui1)ui+p+1kuVi2,k2(ui+pkui1)(ui+pkui)(ui+p+1kui1)uui1Vi1,k2+(ui+pkui1)(ui+pkui)(ui+pkui2)ui+pkuVi3,k2+(ui+pkui1)(ui+pkui)(ui+pkui2)uui2Vi2,k2.
Q i , k + 1 − Δ = α 1 V i , k − 2 + α 2 V i − 1 , k − 2 + α 3 V i − 2 , k − 2 + α 4 V i − 3 , k − 2 Q_{i,k+1}-\Delta=\alpha_1V_{i,k-2}+\alpha_2V_{i-1,k-2}+\alpha_3V_{i-2,k-2}+\alpha_4V_{i-3,k-2} Qi,k+1Δ=α1Vi,k2+α2Vi1,k2+α3Vi2,k2+α4Vi3,k2,则有
α 1 = u − u i ( u i + p − k − u i ) ( u i + p + 2 − k − u i ) ( u i + p + 1 − k − u i ) − u − u i ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 2 − k − u i ) = 0 , \begin{aligned} \alpha_1=& \dfrac{u-u_i}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+2-k}-u_i\right)\left(u_{i+p+1-k}-u_i\right)} \\ &-\dfrac{u-u_i}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+2-k}-u_i\right)} \\ =&0, \end{aligned} α1==(ui+pkui)(ui+p+2kui)(ui+p+1kui)uui(ui+p+1kui)(ui+pkui)(ui+p+2kui)uui0,

α 2 = u i + p − k − u ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) ( u i + p − k − u i − 1 ) − u − u i ( u i + p − k − u i ) ( u i + p + 2 − k − u i ) ( u i + p + 1 − k − u i ) − u − u i ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) ( u i + p + 1 − k − u i ) − u i + p + 2 − k − u ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 2 − k − u i ) + u − u i − 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) + u − u i − 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) = − 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) + 1 ( u i + p + 1 − k − u i − 1 ) ( u i + p − k − u i ) − u − u i ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) ( u i + p + 1 − k − u i ) + u − u i − 1 + u i + p + 1 − k − u i + p + 1 − k ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) = u − u i + p + 1 − k − u + u i ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) + 1 ( u i + p + 1 − k − u i − 1 ) ( u i + p − k − u i ) = 0 , \begin{aligned} \alpha_2=& \dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p-k}-u_{i-1}\right)} \\ &-\dfrac{u-u_i}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+2-k}-u_i\right)\left(u_{i+p+1-k}-u_i\right)} \\ &-\dfrac{u-u_i}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p+1-k}-u_i\right)} \\ &-\dfrac{u_{i+p+2-k}-u}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+2-k}-u_i\right)} \\ &+\dfrac{u-u_{i-1}}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ &+\dfrac{u-u_{i-1}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ =&-\dfrac{1}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)} \\ &+\dfrac{1}{\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)} \\ &-\dfrac{u-u_i}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p+1-k}-u_i\right)} \\ &+\dfrac{u-u_{i-1}+u_{i+p+1-k}-u_{i+p+1-k}}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ =&\dfrac{u-u_{i+p+1-k}-u+u_i}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ &+\dfrac{1}{\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)} \\ =&0, \end{aligned} α2====(ui+pkui)(ui+p+1kui1)(ui+pkui1)ui+pku(ui+pkui)(ui+p+2kui)(ui+p+1kui)uui(ui+pkui)(ui+p+1kui1)(ui+p+1kui)uui(ui+p+1kui)(ui+pkui)(ui+p+2kui)ui+p+2ku+(ui+p+1kui)(ui+pkui)(ui+p+1kui1)uui1+(ui+pkui1)(ui+pkui)(ui+p+1kui1)uui1(ui+p+1kui)(ui+pkui)1+(ui+p+1kui1)(ui+pkui)1(ui+pkui)(ui+p+1kui1)(ui+p+1kui)uui+(ui+p+1kui)(ui+pkui)(ui+p+1kui1)uui1+ui+p+1kui+p+1k(ui+p+1kui)(ui+pkui)(ui+p+1kui1)uui+p+1ku+ui+(ui+p+1kui1)(ui+pkui)10,

α 3 = − u i + p − k − u ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) ( u i + p − k − u i − 1 ) − u i + p − k − u ( u i + p − k − u i ) ( u i + p − k − u i − 2 ) ( u i + p − k − u i − 1 ) + u − u i ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) ( u i + p + 1 − k − u i ) + u i + p + 1 − k − u ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) + u i + p + 1 − k − u ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) − u − u i − 2 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p − k − u i − 2 ) = − 1 ( u i + p − k − u i ) ( u i + p − k − u i − 1 ) + 1 ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) − u i + p − k − u ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) ( u i + p − k − u i − 1 ) + u i + p + 1 − k − u − u i − 1 + u i − 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) = u i − 1 − u − u i + p − k + u ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) + 1 ( u i + p − k − u i ) ( u i + p + 1 − k − u i − 1 ) = 0 , \begin{aligned} \alpha_3=& -\dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p-k}-u_{i-1}\right)} \\ &-\dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p-k}-u_{i-2}\right)\left(u_{i+p-k}-u_{i-1}\right)} \\ &+\dfrac{u-u_i}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p+1-k}-u_i\right)} \\ &+\dfrac{u_{i+p+1-k}-u}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ &+\dfrac{u_{i+p+1-k}-u}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ &-\dfrac{u-u_{i-2}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p-k}-u_{i-2}\right)} \\ =&-\dfrac{1}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p-k}-u_{i-1}\right)} \\ &+\dfrac{1}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ &-\dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)\left(u_{i+p-k}-u_{i-1}\right)} \\ &+\dfrac{u_{i+p+1-k}-u-u_{i-1}+u_{i-1}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ =&\dfrac{u_{i-1}-u-u_{i+p-k}+u}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ &+\dfrac{1}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p+1-k}-u_{i-1}\right)} \\ =&0, \end{aligned} α3====(ui+pkui)(ui+p+1kui1)(ui+pkui1)ui+pku(ui+pkui)(ui+pkui2)(ui+pkui1)ui+pku+(ui+pkui)(ui+p+1kui1)(ui+p+1kui)uui+(ui+p+1kui)(ui+pkui)(ui+p+1kui1)ui+p+1ku+(ui+pkui1)(ui+pkui)(ui+p+1kui1)ui+p+1ku(ui+pkui1)(ui+pkui)(ui+pkui2)uui2(ui+pkui)(ui+pkui1)1+(ui+pkui)(ui+p+1kui1)1(ui+pkui)(ui+p+1kui1)(ui+pkui1)ui+pku+(ui+pkui1)(ui+pkui)(ui+p+1kui1)ui+p+1kuui1+ui1(ui+pkui1)(ui+pkui)(ui+p+1kui1)ui1uui+pk+u+(ui+pkui)(ui+p+1kui1)10,

α 4 = u i + p − k − u ( u i + p − k − u i ) ( u i + p − k − u i − 2 ) ( u i + p − k − u i − 1 ) − u i + p − k − u ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) ( u i + p − k − u i − 2 ) = 0. \begin{aligned} \alpha_4=& \dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_i\right)\left(u_{i+p-k}-u_{i-2}\right)\left(u_{i+p-k}-u_{i-1}\right)} \\ &-\dfrac{u_{i+p-k}-u}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)\left(u_{i+p-k}-u_{i-2}\right)} \\ =&0. \end{aligned} α4==(ui+pkui)(ui+pkui2)(ui+pkui1)ui+pku(ui+pkui1)(ui+pkui)(ui+pkui2)ui+pku0.

从而,得到
Q i , k + 1 = Δ = V i , k − 1 − V i − 1 , k − 1 ( u i + p + 1 − k − u i ) ( u i + p − k − u i ) − V i − 1 , k − 1 − V i − 2 , k − 1 ( u i + p − k − u i − 1 ) ( u i + p − k − u i ) . \begin{aligned} Q_{i,k+1}=\Delta=\dfrac{V_{i,k-1}-V_{i-1,k-1}}{\left(u_{i+p+1-k}-u_i\right)\left(u_{i+p-k}-u_i\right)} -\dfrac{V_{i-1,k-1}-V_{i-2,k-1}}{\left(u_{i+p-k}-u_{i-1}\right)\left(u_{i+p-k}-u_i\right)}. \end{aligned} Qi,k+1=Δ=(ui+p+1kui)(ui+pkui)Vi,k1Vi1,k1(ui+pkui1)(ui+pkui)Vi1,k1Vi2,k1.
证毕。

利用上面的结果,可以得到
P ′ ′ ( u ) = p ( p − 1 ) ∑ i = j − p + k j N i , p − k ( u ) Q i , k = p ( p − 1 ) Q j , p = p ( p − 1 ) [ V j , p − 2 − V j − 1 , p − 2 ( u j + 2 − u j ) ( u j + 1 − u j ) − V j − 1 , p − 2 − V j − 2 , p − 2 ( u j + 1 − u j − 1 ) ( u j + 1 − u j ) ] . \begin{aligned} P^{''}\left(u\right)=& p\left(p-1\right)\sum\limits_{i=j-p+k}^{j}N_{i,p-k}(u)Q_{i,k}=p\left(p-1\right)Q_{j,p} \\ =& p\left(p-1\right)\left[\dfrac{V_{j,p-2}-V_{j-1,p-2}}{\left(u_{j+2}-u_j\right)\left(u_{j+1}-u_j\right)} -\dfrac{V_{j-1,p-2}-V_{j-2,p-2}}{\left(u_{j+1}-u_{j-1}\right)\left(u_{j+1}-u_j\right)}\right]. \end{aligned} P(u)==p(p1)i=jp+kjNi,pk(u)Qi,k=p(p1)Qj,pp(p1)[(uj+2uj)(uj+1uj)Vj,p2Vj1,p2(uj+1uj1)(uj+1uj)Vj1,p2Vj2,p2].

De Boor递推算法求NURBS 曲线上的点

u ∈ [ u j , u j + 1 ) u\in\left[u_j,u_{j+1}\right) u[uj,uj+1),则
P ( u ) = V j , p . P\left(u\right)=V_{j,p}. P(u)=Vj,p.
其中
V i , k = { V i , k = 0 ( 1 − α i , k ) ω i − 1 , k − 1 ω i , k V i − 1 , k − 1 + α i , k ω i , k − 1 ω i , k V i , k − 1 , k = 1 , ⋯   , p , i = j − p + k , ⋯   , j ω i , k = { ω i , k = 0 ( 1 − α i , k ) ω i − 1 , k − 1 + α i , k ω i , k − 1 , k = 1 , ⋯   , p , i = j − p + k , ⋯   , j α i , k = u − u i u i + p + 1 − k − u i , k = 1 , ⋯   , p , i = j − p + k , ⋯   , j \begin{aligned} V_{i,k}=& \begin{cases} V_i,\quad k=0 \\ \left(1-\alpha_{i,k}\right)\dfrac{\omega_{i-1,k-1}}{\omega_{i,k}}V_{i-1,k-1} +\alpha_{i,k}\dfrac{\omega_{i,k-1}}{\omega_{i,k}}V_{i,k-1},\quad k=1,\cdots,p,\quad i=j-p+k,\cdots,j \end{cases} \\ \omega_{i,k}=& \begin{cases} \omega_i,\quad k=0 \\ \left(1-\alpha_{i,k}\right)\omega_{i-1,k-1} +\alpha_{i,k}\omega_{i,k-1},\quad k=1,\cdots,p,\quad i=j-p+k,\cdots,j \end{cases} \\ \alpha_{i,k}=& \dfrac{u-u_i}{u_{i+p+1-k}-u_i},\quad k=1,\cdots,p,\quad i=j-p+k,\cdots,j \end{aligned} Vi,k=ωi,k=αi,k=Vi,k=0(1αi,k)ωi,kωi1,k1Vi1,k1+αi,kωi,kωi,k1Vi,k1,k=1,,p,i=jp+k,,j{ωi,k=0(1αi,k)ωi1,k1+αi,kωi,k1,k=1,,p,i=jp+k,,jui+p+1kuiuui,k=1,,p,i=jp+k,,j

De Boor递推算法求NURBS 曲线的一阶导矢

u ∈ [ u j , u j + 1 ) u\in\left[u_j,u_{j+1}\right) u[uj,uj+1),则
P ′ ( u ) = p u j + 1 − u j ω j − 1 , p − 1 ω j , p − 1 ω j , p 2 ( V j , p − 1 − V j − 1 , p − 1 ) . P^{'}\left(u\right)=\dfrac{p}{u_{j+1}-u_j}\dfrac{\omega_{j-1,p-1}\omega_{j,p-1}}{\omega_{j,p}^{2}}\left(V_{j,p-1}-V_{j-1,p-1}\right). P(u)=uj+1ujpωj,p2ωj1,p1ωj,p1(Vj,p1Vj1,p1).
其中
V i , k = { V i , k = 0 ( 1 − α i , k ) ω i − 1 , k − 1 ω i , k V i − 1 , k − 1 + α i , k ω i , k − 1 ω i , k V i , k − 1 , k = 1 , ⋯   , p , i = j − p + k , ⋯   , j ω i , k = { ω i , k = 0 ( 1 − α i , k ) ω i − 1 , k − 1 + α i , k ω i , k − 1 , k = 1 , ⋯   , p , i = j − p + k , ⋯   , j α i , k = u − u i u i + p + 1 − k − u i , k = 1 , ⋯   , p , i = j − p + k , ⋯   , j \begin{aligned} V_{i,k}=& \begin{cases} V_i,\quad k=0 \\ \left(1-\alpha_{i,k}\right)\dfrac{\omega_{i-1,k-1}}{\omega_{i,k}}V_{i-1,k-1} +\alpha_{i,k}\dfrac{\omega_{i,k-1}}{\omega_{i,k}}V_{i,k-1},\quad k=1,\cdots,p,\quad i=j-p+k,\cdots,j \end{cases} \\ \omega_{i,k}=& \begin{cases} \omega_i,\quad k=0 \\ \left(1-\alpha_{i,k}\right)\omega_{i-1,k-1} +\alpha_{i,k}\omega_{i,k-1},\quad k=1,\cdots,p,\quad i=j-p+k,\cdots,j \end{cases} \\ \alpha_{i,k}=& \dfrac{u-u_i}{u_{i+p+1-k}-u_i},\quad k=1,\cdots,p,\quad i=j-p+k,\cdots,j \end{aligned} Vi,k=ωi,k=αi,k=Vi,k=0(1αi,k)ωi,kωi1,k1Vi1,k1+αi,kωi,kωi,k1Vi,k1,k=1,,p,i=jp+k,,j{ωi,k=0(1αi,k)ωi1,k1+αi,kωi,k1,k=1,,p,i=jp+k,,jui+p+1kuiuui,k=1,,p,i=jp+k,,j

莱布尼茨公式求NURBS曲线的高阶导矢

P ( u ) = ∑ i = 0 n N i , p ( u ) ω i V i ∑ i = 0 n N i , p ( u ) ω i = A ( u ) W ( u ) P\left(u\right)=\dfrac{\sum\limits_{i=0}^{n}N_{i,p}(u)\omega_iV_i}{\sum\limits_{i=0}^{n}N_{i,p}(u)\omega_i} =\dfrac{A\left(u\right)}{W\left(u\right)} P(u)=i=0nNi,p(u)ωii=0nNi,p(u)ωiVi=W(u)A(u),利用求积的高阶导的莱布尼茨公式,得到
P ( k ) ( u ) = A ( k ) ( u ) − ∑ i = 1 k C k i W ( i ) ( u ) P ( k − i ) ( u ) W ( u ) . P^{\left(k\right)}\left(u\right)=\dfrac{A^{\left(k\right)}\left(u\right) -\sum\limits_{i=1}^{k} C_{k}^{i} W^{\left(i\right)}\left(u\right) P^{\left(k-i\right)}\left(u\right)}{W\left(u\right)}. P(k)(u)=W(u)A(k)(u)i=1kCkiW(i)(u)P(ki)(u).
特别的,
P ′ ( u ) = A ′ ( u ) − W ′ ( u ) P ( u ) W ( u ) = A ′ ( u ) W ( u ) − A ( u ) W ′ ( u ) W 2 ( u ) , P ′ ′ ( u ) = A ′ ′ ( u ) − 2 W ′ ( u ) P ′ ( u ) − W ′ ′ ( u ) P ( u ) W ( u ) = A ′ ′ ( u ) W ( u ) − 2 W ′ ( u ) W ( u ) P ′ ( u ) − W ′ ′ ( u ) A ( u ) W 2 ( u ) . \begin{aligned} P^{'}\left(u\right)=&\dfrac{A^{'}\left(u\right)-W^{'}\left(u\right)P\left(u\right)}{W\left(u\right)} =\dfrac{A^{'}\left(u\right)W\left(u\right)-A\left(u\right)W^{'}\left(u\right)}{W^{2}\left(u\right)}, \\ P^{''}\left(u\right)=&\dfrac{A^{''}\left(u\right)-2W^{'}\left(u\right)P^{'}\left(u\right)-W^{''}\left(u\right)P\left(u\right)}{W\left(u\right)} \\ =&\dfrac{A^{''}\left(u\right)W\left(u\right)-2W^{'}\left(u\right)W\left(u\right)P^{'}\left(u\right) -W^{''}\left(u\right)A\left(u\right)}{W^{2}\left(u\right)}. \end{aligned} P(u)=P(u)==W(u)A(u)W(u)P(u)=W2(u)A(u)W(u)A(u)W(u),W(u)A(u)2W(u)P(u)W(u)P(u)W2(u)A(u)W(u)2W(u)W(u)P(u)W(u)A(u).

  • 10
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 11
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值