YOLOv12保姆级教程(win系统和ubuntu系统均可使用)

一、总述

这一篇则详细讲解如何配置YOLOv12,在本地电脑或者服务器都可,然后利用自己的数据集进行训练、推理、检测等。

在这里插入图片描述


YOLOv12是由纽约大学、北京中国科学院大学和布法罗大学团队联合打造,提出了一种以注意力为核心的实时物体检测方法。传统的YOLO模型虽然在速度和精度之间达到了平衡,但其架构主要基于卷积神经网络(CNN),在捕捉全局依赖和提升检测精度方面存在一定局限性。为了突破这些局限,YOLOv12提出了一种新的以注意力机制为中心的框架,该框架在保持高速推理的同时,充分利用了注意力机制的性能优势。

YOLOv12通过以下创新解决了传统模型的瓶颈问题:

  1. 区域注意力模块(A2):提出了一种简单而高效的区域注意力机制,通过减少注意力的计算复杂度,同时保持大范围的感受野,显著提升了模型的推理速度。
  2. 残差高效层聚合网络(R-ELAN):为了解决注意力机制带来的优化挑战,YOLOv12在其骨干网络中引入了R-ELAN。R-ELAN通过增强特征聚合,并加入残差设计和比例缩放技术,优化了梯度流动,从而提升了大规模模型的稳定性和训练效率。
  3. 基于注意力的架构优化:YOLOv12对传统的注意力机制进行了改进,包括引入FlashAttention来解决注意力计算中的内存访问问题,去除位置编码并调整MLP比率,从而在保持计算效率的同时,进一步提升了模型性能。

基于这些创新设计,YOLOv12开发出了五个不同规模的实时检测模型:YOLOv12-N、S、M、L和X。YOLOv12在COCO数据集上的实验结果表明,它在不同规模的模型上都显著超越了其他主流实时检测器,尤其是在APval(平均精度)和推理延迟(Latency)方面,显示出YOLOv12在精度和速度之间达到了最佳的平衡。

具体来说,YOLOv12-N在APval上超过了YOLOv10-N和YOLOv11-N,分别提高了2.1%和1.2%的APval,并且在推理速度上保持了竞争力。此外,YOLOv12-S在与RT-DETR和RT-DETRv2进行比较时,表现出了更快的推理速度,并且计算量和参数量分别减少了36%和45%。

总之,YOLOv12通过将注意力机制与传统YOLO架构相结合,成功打破了卷积神经网络(CNN)在YOLO系列中的主导地位,并提出了新的架构创新,使其在保持高速推理的同时,达到了更高的检测精度,为实时物体检测领域的研究和应用带来了重要的进展。


二、YOLOv12代码下载

论文地址:YOLOv12论文地址
GitHub地址:GitHub代码下载地址

代码下载: 此处直接点击【Code】→【Download ZIP】下载即可
在这里插入图片描述在这里插入图片描述

权重下载: 此处直接选择权重文件【YOLO12n】下载即可
在这里插入图片描述

在全部下载完成后,将权重文件放到【yolov12-main】文件夹内
在这里插入图片描述


三、环境配置

在windows系统下打开Anaconda的终端,创造虚拟环境。

① 创建虚拟环境

如下:输入 conda create -n yolov12(代表环境名称) python=3.11 (使用Python的版本),然后创建就可以了

conda create -n yolov12 python=3.11

在这里插入图片描述

是否安装环境所需基础包,输入y安装:
在这里插入图片描述

安装完成如下图:
在这里插入图片描述

环境安装完成后,【conda activate yolov12】激活刚才创建的环境
在这里插入图片描述

注1:进入环境后,前面会从base变为yolov12
注2:此处我直接显示的是我环境路径,无关紧要,二者均可

② 在Pytorch中使用在Anaconda中创建的环境进行运行

1、Pytorch中点击右下角【无解释器】
在这里插入图片描述
2、选择【解释器设置】

在这里插入图片描述

3、选择【Python解释器】→【<无解释器>右侧右侧小三角】→【全部显示】
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

4、选择【刚建立的环境】并【确定】
在这里插入图片描述
5、接下来一直选择【OK】即可
在这里插入图片描述

6、回到Ptchram页面,选择【终端】并选择终端页面上方右侧【向下三角】中的【Command Prompt】
在这里插入图片描述
7、输入【conda info --envs】

conda info --envs

在这里插入图片描述
8、激活环境
找到自己对应的环境并输入如下代码

conda activate C:\Users\DaoXin\your_path\yolov12
# 其中【C:\Users\DaoXin\your_path\yolov12】为你自己环境所处的路径

在这里插入图片描述
9、环境激活完毕
在这里插入图片描述

10、安装requirements环境
注意:我采用的是win10系统,源代码中采用的是【flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl】,如果ubuntu系统正常运行安装代码即可,如果是win系统请看本版块备注
在这里插入图片描述

安装requirements.txt文件,后面加清华的镜像源效果更好。

//不加清华源
pip install -r requirements.txt
//加清华源
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述
Win系统备注
由于源代码中并无win系统编译,优先选用下载代码后,自行编译,实在不行选用备用方案,备用方案极易出错,整体编译时间大概需要1个小时。
编译参考链接: Windows环境下flash-attention安装

备用方案:
①先去此处下载对应的win版本库
flash编译库: Github链接
此时文件需要留意是属于适配于自己的环境,其中文件名称【flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-win_x86_64.whl】的具体含义为需要适配CUDA 11、PyTorch 2.2、python3.11,具体情况以此类推
在这里插入图片描述
并将其放置到【yolov12-main】文件夹中
在这里插入图片描述
最后再运行安装requirements.txt文件
11、开发模式安装Python包

pip install -e .

在这里插入图片描述
出现如下,至此环境安装成功
在这里插入图片描述

四、制作数据集

我的另外一篇博客: 第四部分

五、开始训练

使用PyCharm打开yolov12-main文件夹,并将环境转为刚建立的yolov12虚拟环境
在这里插入图片描述

开启正式训练:
trian.py文件下右键【run ‘train’】
下面展示 train.py代码片。

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO


if __name__ == '__main__':

    model = YOLO(r'C:\Users\DaoXin\PycharmProjects\yolov12-main\ultralytics\cfg\models\v12\yolov12n.yaml')
    # 代表使用yolov12的神经网络结构
    model.load(r'C:\Users\DaoXin\PycharmProjects\yolov12-main\yolov12n.pt')
    # 代表使用yolov12n的预训练权重
    model.train(data=r'C:\Users\DaoXin\PycharmProjects\yolov12-main\TILDA\data.yaml', # 数据集yaml路径
                imgsz=640, # 输入图像的尺寸为 640x640 像素
                epochs=300, # 训练300轮
                batch=16, # 每一批样本的数量
                workers=32, # 同时32个线程
                scale=0.5, #设置图像缩放因子,影响数据增强中的尺度变化。
                mosaic=1.0, # 启用 Mosaic 数据增强,值为 1.0 表示完全启用。
                mixup=0.0, # 设置 MixUp 数据增强的混合比例,这里设置为 0.0,表示不使用。
                copy_paste=0.1, # 设置 Copy-Paste 数据增强的概率。
                device="0", #只使用第一张显卡进行训练
                project=r'C:\Users\DaoXin\PycharmProjects\yolov12-main\train',
                name='yolov12n',
                )

GPU-Win10版本训练正常
在这里插入图片描述
GPU-Ubuntu22.04版本训练正常
在这里插入图片描述

如有问题,欢迎大家一起交流,不胜感激!!!

<think>好的,我现在需要帮助用户查找关于Traefik插件的使用说明、配置示例。首先,用户提到他们想了解与Traefik插件相关的信息,特别是使用说明、配置示例。根据用户提供的引用内容,我需要整理这些信息,并按照用户的要求进行结构化回答。 首先,我要回顾用户提供的引用内容。引用[1]提到了在静态配置文件中添加插件的配置示例,引用[3][5]介绍了GitHub上的示例插件demo,说明插件是通过Yaegi动态执行的,并提到了开发指南。引用[4]提到了使用Helm chart部署Traefik,这可能与插件的安装有关。引用[2]可能是一个Terraform的示例,但具体内容不明确,暂时可能用不上。 接下来,我需要确定用户的需求:他们需要知道如何配置使用Traefik插件,包括具体的步骤示例。根据引用内容,可以分步骤说明配置方法,比如静态配置文件中的设置,以及插件的开发或使用现有插件的步骤。可能还需要提到动态加载注意事项,如实验性功能、版本兼容性等。 需要确保回答符合用户的要求,结构清晰,分步骤说明。同时,要引用提供的引用内容,正确标注引用标识。例如,引用[1]中的配置示例,引用[3]关于GitHub仓库的信息,引用[4]提到的Helm安装方法,以及引用[5]的项目介绍部分。 另外,用户可能对插件的实际应用场景如何开发自己的插件感兴趣,所以可能需要包含这些信息。还要生成相关问题,如如何开发自定义插件、动态加载机制、性能影响等。 需要注意的是,用户提供的引用中有部分内容可能不直接相关,比如引用[2]的Terraform示例,但如果没有更相关的信息,可以暂时忽略。确保回答中的引用准确对应到相关的部分。 总结回答结构: 1. 插件配置步骤,包括静态配置文件示例Helm安装。 2. 使用现有插件的步骤,比如demo插件的安装。 3. 开发自定义插件的基本流程。 4. 注意事项,如实验性功能、版本要求等。 5. 相关问题部分,生成相关问题。 现在需要将这些信息整合成自然的中文回答,正确引用来源,并确保LaTeX格式符合要求,虽然用户的问题可能不涉及数学公式,但如果有变量或代码,需要使用正确的格式。例如,配置示例中的代码块需要用反引号包裹,并注明语言类型。 检查是否有遗漏的信息,比如引用[3]提到的Yaegi解释器,可能需要解释动态加载机制。同时,引用[5]提到插件是扩展Traefik功能的强大工具,可以用于流量管理,这部分可以在应用场景中提及。 最后,生成的相关问题需要与Traefik插件的使用、开发、配置相关,确保问题有针对性,能够引导用户进一步探索。</think>### Traefik 插件使用说明与配置示例 #### 1. 插件配置基础步骤 Traefik 插件通过静态配置文件或动态加载实现。以下为静态配置示例(需在 Traefik 的 YAML 配置文件中添加): ```yaml experimental: localPlugins: example: moduleName: github.com/traefik/plugindemo # 插件模块路径[^1] ``` 此配置声明了一个名为 `example` 的本地插件,指向 GitHub 上的示例仓库[^3]。 若使用 Helm 安装 Traefik,需在 `values.yaml` 中启用插件支持: ```yaml experimental: plugins: enabled: true # 启用插件功能[^4] ``` #### 2. 使用现有插件(以 demo 插件为例) 1. **安装插件** 通过修改 Traefik 部署配置,将插件代码编译到 Traefik 二进制文件中,或通过动态加载(需 Yaegi 支持)。 2. **配置路由规则** 在 `IngressRoute` 中引用插件: ```yaml apiVersion: traefik.io/v1alpha1 kind: Middleware metadata: name: demo-plugin spec: plugin: example: # 插件名称 headerName: "X-Custom-Header" headerValue: "Hello from Plugin" ``` #### 3. 开发自定义插件 1. **代码结构** 遵循 Traefik 插件接口规范,实现 `New` 初始化方法 `Handle` 请求处理逻辑[^3]。 2. **动态加载** 利用 Yaegi 解释器实时加载插件(无需重启 Traefik): ```go // 示例插件逻辑 func New(ctx context.Context, config *Configuration) (http.Handler, error) { return &demoPlugin{config}, nil } ``` #### 4. 注意事项 - **实验性功能**:插件功能标记为实验性,需在配置中显式启用[^4]。 - **版本兼容性**:确认 Traefik 版本支持插件(建议 v2.3+)[^4]。 - **安全限制**:动态加载插件需注意代码安全性,建议审核第三方插件[^5]。 --- ###
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值