多元函数第五:拓扑初步(2)开闭集的并和交

本文探讨拓扑空间中开集和闭集的概念,以及它们在并和交运算下的性质。通过实例和定理证明,展示了空集、全空间R^n以及开区间等作为开集和闭集的特性,并阐述了有限和无限个开集、闭集的并、交运算对集合性质的影响。
摘要由CSDN通过智能技术生成

拓扑初步(1)中,我们给出了开集和闭集的严格定义。这些定义的基础,是开球的概念。由开球,引出了内点,外点和边界点的概念。而内点,外点和边界点的集合,分别叫做内部,外部和边界。开集和闭集的概念,与边界紧密相关。如果一个集合不包含任何边界点,那么这个集合被称作开集。由此,我们可以很容易猜想,闭集就是包含所有边界点的集合。而还有许多的,介于两者之间的,包含部分边界点的集合,就既不是开集也不是闭集了。那么什么集合既是开集,又是闭集呢?很简单,如果一个集合没有边界点,那么它既是开集又是闭集。例如,我们的n维全空间 R n \mathbb{R}^n Rn,既是开集也是闭集。

本文考虑集合的最基本运算,即并和交。因为我们都知道,并、交,加上补运算,是集合最基础的运算。任何其他的运算,都可以看成是这三个基本运算的组合。

在研究开集闭集的性质之前,需要说明的是,开集和闭集的定义,是以某个拓扑空间为前提的。离开拓扑空间这个前提,开集和闭集的定义就没有意义了。比如直线上的两点a和b,可以构成一个开区间 ( a , b ) (a, b) (a,b)。如果我们把直线看做是拓扑空间,那么这个区间显然是开集。但是,如果我们把一个平面看做是拓扑空间,那么这个区间就不是开集了。因为拓扑空间的定义不同,会直接影响邻域的定义。只是在一般不造成歧义的情况下,我们通常把拓扑空间这个前提条件略去。

命题. 空集是开集。
证明. 空集的内部也是空集,也即 i n t ( ∅ ) = ∅ int(\emptyset)=\emptyset int()=。根据开集的定义知,空集是开集。证毕。

推论. 集合 R n \mathbb{R}^n Rn是闭集。
证明. 因为它是空集的补集。证毕。

命题. 集合 R n \mathbb{R}^n Rn是开集。
证明. 对于任意的 x ∈ R n x\in\mathbb{R}^n xRn有开球 U ( x , 1 ) ⊆ R n U(x, 1)\subseteq\mathbb{R}^n U(x,1)Rn,故 x x x R n \mathbb{R}^n Rn的内点。这说明 i n t ( R n ) = R n int(\mathbb{R}^n)=\mathbb{R}^n int(Rn)=Rn。证毕。

推论. 空集是闭集。

上面的几个结论,证明了集合 R n \mathbb{R}^n Rn和空集既是开集也是闭集。接下来,我们介绍一般的开集和闭集的性质。

定理. 设 G λ , λ ∈ Λ G_\lambda,\lambda\in\Lambda Gλ,λ

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值