二维傅里叶旋转定理证明_旋转磁场理论(Drehfeldtheorie)(一)

本文深入探讨了旋转磁场的概念,通过傅里叶分析解析电流分布、气隙和磁感应强度的关系。在同步电机的场景下,分析了电流分布的傅里叶分解,揭示了电流分布与旋转磁场的数学联系,并讨论了磁导值对磁感应强度的影响。此外,文章还介绍了振动(Schwankungen)和谐波(Wellen)的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍以下几个概念:

  • 什么是旋转磁场
  • 傅里叶分析下的电流空间分部、气隙分布以及磁感应强度分布

(Strombelagswellen, Leitwertwellen, Induktionsdrehwellen)

1. 旋转磁场

什么是旋转磁场,先举个条形磁铁的例子

e07825ecab9a473ba9991864691dc907.png
图 1-1

磁铁或者通电线圈有附近存在磁场,磁感线的疏密表示磁场大小,方向表示磁场方向。为了简化表示,取其主磁通方向(磁铁内从是指向N表示)。将这个条形磁铁旋转可以得到一个圆形旋转磁场。

旋转磁场:磁感应矢量在空间以固定频率旋转的一种磁场。

9a2bd425a1faaad5fddb53dac18196e6.png
图 1-2

上图右边每一个箭头表示不同时间下磁铁主磁通的位置。

旋转一个通电线圈也能得到相同的效果。但是如果这线圈通的不是直流电,而是交流电呢?

4d96f3104cceb266cd0d75d261918031.png
图 1-3

首先假设线圈不动,那么不同时刻它的幅值不一样,如上图左侧。这时叫做变化场(Wechselfeld)。图1-2中右侧由条形磁铁旋转得到磁场我们叫做圆场。圆场和变化场叠加可以得到椭圆场,椭圆场和圆场都是旋转场。

它们的数学描述如下:

41e559eccc72b90c9ce012b8b1f971f1.png

b表示瞬时磁场大小,B表示磁场的幅值,p为极对数可以简单假设为1,x是圆周上的位置,ωt是角速度*时间。

假设有两个磁铁。磁铁2放置于桌面,磁铁1悬挂于其上方,让悬挂的磁铁1旋转,磁铁2会跟着同步旋转。磁铁1的作用即创造一个旋转磁场。如果我们能用线圈生成一个旋转磁场,那么磁铁2就是转子,这是永磁同步电机,如果磁铁2也使用电流励磁的线圈那这就是普遍意义的同步电机。

那么如何利用不动的线圈产生旋转磁场?

2. 电流分布,气隙以及磁感应的傅里叶分析

计算由线圈产生的磁场需要用到安培环路定理

8bd31024b803727ae8f2f567891a8f55.png

能够影响H的有电流,积分路径。而B=H。由于:

  • 由于铁芯部分μ很大
  • 磁通不变原则(在整个磁路上B近似不变)

铁芯内的H很小,可以忽略。由安培环路定理可以得到

551ceb26877bc908f468d8d19f0c1ab9.png

这里δ表示气隙长度。

所以为了计算磁感应强度,我们需要知道电流I和气隙长度δ。

接下来我们将探索同步电机分析其是否产生了旋转磁场。

2.1 电流分布的傅里叶分析(Strombelagswellen)

首先是分析电流,在同步电机里,电流不再仅仅在一根导线内流过,而是许多绕组。我们希望得到电流在周向上的分布,简称电流分布。(Strombelagswellen)

592f0cf333bc7fe461de8c876a967ad9.png
图 2-1-1

图2-1-1展示了同步电机定子的绕组分布,1、2、3分布代表了3相,正负号是由于线圈在轴向(垂直于纸面)的进出不同。电流分布写作a,A表示最大值。

以第一相为例,由于同相线圈电流一致,所以对应的电流分布相等。

b1cef29594023966a4adaf5042c5fc47.png

来源于有效值,w1是线圈数量,p可以依旧等于1,分母就是周向的弧长。那么电流分布可以写成一个分段函数

ea2a37e53988cf09176cb64c7404717d.png

这里引入t变量,考虑到交流电的变化。对这个分段函数进行傅里叶分解可以得到

bbaabfc750006541516a30398c200525.png

其中v表示频次,cos(vx)和

都是由傅里叶分解得到的量,sin则是描述电流本身的变化。旋转电机(这里指同步和异步,因其都是旋转磁场,所以叫旋转电机)一共有三相。每相之间空间位置有变化,电流也有120度的相移。所以三相叠加可得

67cfa44b92a8e6fc907c61aea7235dbc.png

之后则是三角函数的一顿蛇皮操作,得到

6951bff3998192e80986a719ed43b60b.png

此时一看,对比之前圆场的数学描述,发现电流分布在数学形式上是由无数个圆场的叠加而来的。

“那岂不是?”

“啪!并没有。”

注意,一直到现在为止讨论的都是电流分布a( x, t),它与磁感应b( x, t)之间还有一个积分过程,并且需要气隙δ联系。其次不同频率的圆场叠加后并不是圆场!甚至不是椭圆场,圆场和椭圆场的的幅值在相同空间位置是固定的,而不同频率叠加场同一位置的幅值也不一样。但是,请注意这之中有个计算因子

,如果
接近1,其它很小可以忽略的话那就是一个圆场了。事实情况中,
一般接近1,其它因子很小。

总结一下,我们希望用通电线圈建立旋转磁场,以3相电机为例,使用了傅里叶分析得到其电流分布近似于圆场磁场,但是同时存在高次谐波()。。那么是否只有3相电机能达到这个效果呢?答案是否定的,通过调节相数、线圈的分布(空间因素),和每相电流的相移(时间因素)可以达到类似的效果。

到这里我们需要思考一个问题,旋转磁场有什么意义?

假设在上述磁场中有一个同步旋转的磁铁,如果是圆形场,那么它受到的力矩在各个位置都是相等的;如果是椭圆场则在不同的位置有不同的力矩;如果有多个大计算因子

的谐波,则会随着时间出现力矩的波动。

我们把由于空间位置带来的力矩变化叫做振动(Schwankungen),由时间带来的变化叫做谐波(Wellen)。

之前的论述过程中,傅里叶分解采取了黑箱处理。一个周期函数可以分解成无数个三角函数的叠加,影响分解后函数表达式的因素是分解前的“函数形状”。下图给出几个常见周期函数的傅里叶分解。

38deb5f25d04b5e952d3f1225f1aedf6.png

2.2 磁导值(Leitwert)和磁感应强度

磁感应强度除了受到电流还受到气隙宽度δ以及μ的影响,这里我们定义一个新的量——磁导值Λ,它将这两个涵盖了进去。

0717c3ea9521970d506d31525312883e.png

δ指气隙宽度,δ在轴向分布上一般不是恒值(由于线圈开槽等原因)。但是也可以用傅里叶分解得到一系列的三角函数合。δ"是虚拟气隙宽度。上标的两撇,第一撇表示旋转时转子的偏心,第二撇表示考量了磁饱和现象,磁饱和现象带来的波动也归纳入δ之中,这也是δ( x, t)中有时间变量的原因。

7aac45990dd277af70d57a216ba61392.png
图 2-2-1

有了电流分布,磁导值根据安培环路定理(忽略铁芯部分)可以给出磁感应强度的计算公式了

0963e7d4903bb915b06e23f84b10f1ec.png

式中v( x, t) 表示磁动势,即安培环路公式的左侧电流之合。积分常数项c(t)是由于绕组头有电流流过在定子和转子之间产生了磁通量。

18045104439b0dca48bb450716a7cd56.png
图 2-2-2

如上图我们之前讨论的所有电流都是取一个圆形横截面,电流流向是轴向的。但是在两端绕组头处还有周向流动的电流。

为了便于理解,先假设磁导值磁Λ为常数,同时c(t)=0。事实上绕组端头的设计会使得c(t)=0磁感应强度与电流的关系为

其中

a72439976265a8aff4c06634ff444182.png
图 2-2-3

电流分布和磁感应的积分关系如图2-2-3所示

如果Λ为不为常数,

这个公式就是将磁导值

( x, t)的傅里叶分解形式与电流分布a( x ,t) 带入了安培环路定理得到。λ是磁导值
的频次,v是电流分布a( x, t)的分布。c(t)的公式暂且略过,因为我不会。

总结一下,到这里我们完成了:

1.三相交流电励磁定子的磁感应强度b( x, t)的数学描述

2.明白了电流分布a(x,t)和

对b(x,t)的影响

3. 给出了两个重要定义振动(Schwankungen)和谐波(Wellen)

4.安培环路定律在旋转磁场的表达式

5.得到了

,c(t)=0条件下的b(x,t)

6.也得到了b(x,t)的完全描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值