数学基础(4)参数估计与矩阵运算基础

Table of Contents

期望

期望的性质

方差

协方差

协方差的意义

协方差和独立、不相关

协方差的上界

相关系数

N维协方差阵

统计参数的总结

偏度

切比雪夫不等式

大数定理

伯努利定理

中心极限定理

样本的统计量

样本的矩

矩估计

极大似然估计



期望

期望的性质

独立事件:P(AB)=P(A)xP(B)

 

 

 

 

 

 

 

 

 

方差

协方差

协方差的意义

协方差是两个随机变量具有线性方向变化的一个度量,但不能度量这两个变量的其他函数相关性

协方差和独立、不相关

协方差的上界

相关系数

相关系数只能度量X、Y的线性相关程度,不能度量其他函数诸如X=Y^2, 不具有线性关系,但是具有其他函数关系。

N维协方差阵

在协方差阵中,主对角线元素为每一个随机变量的方差Var(X)


统计参数的总结

X均值是X的一阶原点矩;

方差是X的二阶原点矩;

偏度

 

切比雪夫不等式

大数定理

当n很大时,某一件事发生的概率近似等于其频率除以总数n。

伯努利定理

中心极限定理

样本的统计量

样本的矩

矩估计

-根据样本的均值和方差,估计总体的均值与方差。

样本一阶、二阶中心距认为是近似等于总体的一阶、二阶中心距。


极大似然估计


 

 

 

 

 

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页