一、论文信息
- 标题: SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-Resolution
- 论文连接: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/06713.pdf
- GitHub链接: ECCV 2024
- 发布日期: 2024年10月27日
- 关键词: 自调制特征聚合、图像超分辨率、轻量级网络
二、创新点
-
自调制特征聚合模块(SMFA):
- 该模块通过有效的自注意力近似(EASA)分支捕捉非局部信息,同时使用局部细节估计(LDE)分支来捕获局部特征,解决了传统自注意力机制在细节捕获上的不足。