有用的博客资源

2018 paper:https://github.com/amusi/daily-paper-computer-vision 
vm配置:http://blog.csdn.net/u013142781/article/details/50529030 
CMakeLists.txt:http://blog.csdn.net/z_h_s/article/details/50699905 
莫烦python:https://morvanzhou.github.io/ 
廖雪峰git与python:https://www.liaoxuefeng.com/ 
~~ios上实现小规模yolo模型:http://colabug.com/107304.html 
图像检测汇总:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#t-cnn
压缩caffemodel:https://github.com/RalphMao/demo_nn_compress 
实时车辆检测:https://github.com/upul/CarND-Vehicle-Detection 
MPII行人位姿数据集,可PK:http://human-pose.mpi-inf.mpg.de/#overview 
识别领域汇总:http://www.cnblogs.com/zlslch/p/6970680.html 
xnor采访名言:https://techcrunch.com/2017/01/19/xnor-ai-frees-ai-from-the-prison-of-the-supercomputer/ 
博客专栏:http://blog.csdn.net/column/mycolumn.html 
多人位姿检测(骨骼点)2017:https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation 
github 57个最火热的框架:http://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github 
人脸检测、arm加速caffe:https://github.com/OAID/FaceRecognition 
关于人脸检测的几个框架:http://www.sohu.com/a/154168717_206784 
聊天机器人:https://www.cnblogs.com/zdz8207/p/DeepLearning-tensorflow-chatbot.html 
大牛:http://www.shareditor.com/blogshow/?blogId=121 
语料数据集 https://github.com/candlewill/Dialog_Corpus 
各种数据集:https://zhuanlan.zhihu.com/p/25138563 
车辆检测(RepNet):https://github.com/xuqiantong/RepNet 
反卷积:https://www.zhihu.com/question/43609045 
条形码检测识别:https://github.com/seajune/Barcode-Scanner 
CVPR 2018:http://openaccess.thecvf.com/CVPR2018.py 
BN层讲解:https://blog.csdn.net/myarrow/article/details/51848285

0、以后有用

Boosted Tree:一篇很有见识的文章 http://dataunion.org/15787.html 
Kaggle—So Easy!百行代码实现排名Top 5%的图像分类比赛 : 
http://blog.csdn.net/v_july_v/article/details/71598551 
卷积的尺度和位置不变形解析:https://www.quora.com/How-is-a-convolutional-neural-network-able-to-learn-invariant-features

1.LSTM与RNN

官方:http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
翻译:http://www.jianshu.com/p/9dc9f41f0b29 
cs231n老师的博客:http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
这个是我见得写的最好的RNN,里面还有关于机器翻译,语音识别,语言模式,图像描述的论文,绝了:http://blog.csdn.net/heyongluoyao8/article/details/48636251 
图像描述论文(cs231n的Andrej Karpathy)与github代码地址: 
http://cs.stanford.edu/people/karpathy/deepimagesent/ 
https://github.com/karpathy/neuraltalk

2.YOLO2训练自己的数据集

http://lib.csdn.net/article/deeplearning/57863?knId=1726 
http://blog.csdn.net/samylee/article/details/53414108 
V1版:http://blog.csdn.net/sinat_30071459/article/details/53100791

3.faster训练自己的数据集

http://blog.csdn.net/sinat_30071459/article/details/51332084 
http://blog.csdn.net/sinat_30071459/article/details/50723212

4、深度学习

类似cs231n:http://blog.csdn.net/u014595019/article/details/52571966 
大牛:http://blog.csdn.net/xbinworld/article/details/44464663 
大牛!全:http://blog.csdn.net/hjimce/article/details/49255013 
基础深度学习,有代码: 
https://www.zybuluo.com/hanbingtao/note/433855 
Deep Learning Tutorials 
http://www.deeplearning.net/tutorial/ 
BN层原理:http://www.cnblogs.com/stingsl/p/6428694.html

5.Theano学习

学习指南翻译(版本1): 
http://www.cnblogs.com/xueliangliu/archive/2013/04/03/2997437.html 
学习指南翻译(版本2): 
http://www.cnblogs.com/charleshuang/p/3648804.html 
官方: 
http://deeplearning.net/software/theano/tutorial/ 
★github示例: 
https://github.com/Newmu/Theano-Tutorials 
★挺全的theano知识点讲解 
http://www.cnblogs.com/shouhuxianjian/category/699462.html 
theano函数官方文档: 
http://deeplearning.net/software/theano/library/tensor/basic.html 
简单易懂: 
http://www.cnblogs.com/YiXiaoZhou/p/6079428.html 
keras官方文档:http://keras-cn.readthedocs.io/en/latest/

6.python基础

super:http://www.cnblogs.com/lovemo1314/archive/2011/05/03/2035005.html 
format:http://www.jb51.net/article/63672.htm 
anaconda安装tensorflow: 
http://www.cnblogs.com/aloiswei/p/6510355.html

7.lua

lua面向对象编程,写的很透彻: 
http://www.jellythink.com/archives/529 
.与:区别: 
http://www.cnblogs.com/youxilua/archive/2011/07/28/2119059.html 
元表方法: 
http://www.cnblogs.com/JimLy-BUG/p/5364281.html

8.mxnet

https://github.com/dmlc/mxnet 
BMNet:https://github.com/hpi-xnor/BMXNet

9.torch

卷积层源码:http://blog.csdn.net/shenxiaolu1984/article/details/52373174 
tensor操作:http://blog.csdn.net/whgyxy/article/details/52204206 
60分钟学torch: 
原版:https://github.com/soumith/cvpr2015/blob/master/Deep%20Learning%20with%20Torch.ipynb 
翻译:http://blog.csdn.net/baidu_17806763/article/details/61630538 
torch学习资料:http://blog.csdn.net/victoriaw/article/details/71703568 
torch学习系列(1),包含tensor操作:http://blog.csdn.net/whgyxy/article/category/6352333 
torch学习系列(2)http://blog.csdn.net/u010946556/article/category/6216156 
torch.nn模块学习(还有tensorflow、matlab、softmax问题):http://blog.csdn.net/hejunqing14/article/category/6356970 
torch学习系列(3):http://blog.csdn.net/Hungryof/article/category/6245605 
torch、自己建立一个层(如xnor):https://zhuanlan.zhihu.com/p/21550685 
官方:http://torch.ch/docs/developer-docs.html 
一些torch小函数:http://blog.csdn.net/JIEJINQUANIL/article/category/5884857 
关于torch建立层汇总: 
http://blog.csdn.net/lanran2/article/details/50494570 
http://lib.csdn.net/article/deeplearning/51259 
http://www.cnblogs.com/crossing/p/4826668.html 
http://torch.ch/docs/developer-docs.html

10.Tensorflow-faster

tensorflow与Keras(Keras中文官方文档):https://keras-cn.readthedocs.io/en/latest/blog/keras_and_tensorflow/ 
Tensorflow-API:https://www.tensorflow.org/api_docs/ 
Faster-RCNN_TF:https://github.com/smallcorgi/Faster-RCNN_TF 
tf-faster-rcnn:https://github.com/endernewton/tf-faster-rcnn 
将tensorflow移植到android手机实现物体识别!!http://blog.csdn.net/xiaopihaierletian/article/details/61933695 
tensorflow-API:http://www.jianshu.com/nb/5517733 
常用函数:http://blog.csdn.net/lenbow/article/details/52152766 
tensorflow基础学习博客:http://blog.csdn.net/u012436149/article/details/53018924 
tensorflow应用较全:http://blog.csdn.net/helei001/article/details/51842531

11、faster

http://blog.csdn.net/wopawn/article/details/52223282 
demo.py解析 
论文解析,很好:http://blog.csdn.net/wopawn/article/details/52223282#reply 
论文翻译,这人有一套rcnn博客:http://blog.csdn.net/u011534057/article/details/51259812 
overfeat:http://blog.sciencenet.cn/blog-1583812-844178.html 
rpn代码解析:http://blog.csdn.net/sloanqin/article/details/51545125

12、安装tcl/tk和Tkinter

http://blog.csdn.net/cryhelyxx/article/details/22514871

13、在阅读Faster-RCNN_TF代码中观看的博客:

os.path:http://book.51cto.com/art/201405/440066.htm 
eastdict:https://pypi.python.org/pypi/easydict/ 
strip:http://www.cnblogs.com/itdyb/p/5046472.html 
zip:http://www.cnblogs.com/frydsh/archive/2012/07/10/2585370.html 
range与xrange:http://blog.csdn.net/ithomer/article/details/17285449 
xml.etree.ElementTree:http://www.cnblogs.com/hongten/p/hongten_python_xml_etree_elementtree.html 
xml文件解析:http://blog.csdn.net/zhangjunbob/article/details/52769381 
http://blog.csdn.net/gingerredjade/article/details/21944675 
@作用:http://blog.sina.com.cn/s/blog_571b19a001013h7j.html 
stack:http://blog.csdn.net/huruzun/article/details/39801217 
generate_anchors.py注释:http://blog.csdn.net/xzzppp/article/details/52317863 
numpy.ravel() vs numpy.flatten() :http://blog.csdn.net/lanchunhui/article/details/50354978 
meshgrid:http://blog.csdn.net/grey_csdn/article/details/69663432 
anchor产生的问题:http://blog.csdn.net/zqjackking/article/details/59725989 
bbox.pyx:http://blog.csdn.net/guotong1988/article/details/54729530 
tf.nn.softmax_cross_entropy_with_logits:http://blog.csdn.net/mao_xiao_feng/article/details/53382790 
tensor与ndarray操作与转换:http://blog.csdn.net/wyl1987527/article/details/62458057 
★变量、相关变量初始化、保存:http://www.cnblogs.com/claude-gyh/p/6554322.html 
saver:http://blog.csdn.net/u011500062/article/details/51728830 
uninitial error:https://stackoverflow.com/questions/34001922/failedpreconditionerror-attempting-to-use-uninitialized-in-tensorflow 
★与模型保存读取(saver)相关的一切操作:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ 
翻译:http://blog.163.com/wujiaxing009@126/blog/static/7198839920175671529472/ 
其余相关:http://www.cnblogs.com/azheng333/archive/2017/06/09/6972619.html 
http://blog.csdn.net/thriving_fcl/article/details/71423039 
http://www.jianshu.com/p/8487db911d9a 
http://blog.csdn.net/u014659656/article/details/53954793 
tf.trainable_variables与tf.all_variables:http://blog.csdn.net/uestc_c2_403/article/details/72356448 
tf.gradients 与 tf.stop_gradient() :http://blog.csdn.net/u012436149/article/details/53905797

14、haar与adaboost

利用OpenCV自带的haar training程序训练分类器 :http://blog.csdn.net/carson2005/article/details/8171571 
http://blog.csdn.net/liulina603/article/details/8184451 
haar原理:http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 
http://blog.csdn.net/bbzz2/article/details/50764159 
dlib+opencv人脸特征检测:http://blog.csdn.net/zmdsjtu/article/details/52422847 
训练常见问题:http://www.cnblogs.com/chensheng-zhou/p/5542887.html

15、dlib array2d与Mat

https://stackoverflow.com/questions/29118317/how-to-convert-mat-to-array2drgb-pixel 
http://blog.csdn.net/huixingshao/article/details/55510950 
http://blog.csdn.net/qq_26671711/article/details/53713529 
http://blog.csdn.net/yubin1277408629/article/details/53561037

16、三维重建

vcglib -github:https://github.com/cnr-isti-vclab/vcglib 
win10+vs+cuda :http://blog.csdn.net/u011821462/article/details/50145221 
★三维可视化工程:http://redwood-data.org/indoor/tutorial.html 
win10+vs2015 meshlab编译 :http://blog.csdn.net/hanshuobest/article/details/71525388 
windows-git:http://blog.csdn.net/qq_34698126/article/details/53521187

17、kinfu环境配置

kinfu安装配置全解:http://blog.csdn.net/alan_1550587588/article/details/54582192 
VS2010和IVF2011的安装教程 Fortran: 
http://wenku.baidu.com/view/9e28de1b01f69e314332949c.html 
Fortran认证书Intel_Visual_Fortran_XE2011.lic: 
http://pan.baidu.com/s/1kT9lR8r 
ros下使用kinfu:http://blog.csdn.net/l_h2010/article/details/38349927

18、c++

c++笔记:http://www.cnblogs.com/ggjucheng/archive/2012/08/18/2645319.html 
typedef:http://blog.csdn.net/ameyume/article/details/6326278 
指针的指针:http://blog.jobbole.com/60647/ 
成员函数指针:http://blog.csdn.net/jinjinclouded/article/details/5189540 
c++指针:http://www.cnblogs.com/ggjucheng/archive/2011/12/13/2286391.html 
qt学习:http://www.kuqin.com/qtdocument/tutorial.html 
argc和argv含义及用法 :http://blog.csdn.net/dcrmg/article/details/51987413 
虚函数与纯虚函数:http://blog.csdn.net/xwpc702/article/details/8670025 
http://blog.csdn.net/hackbuteer1/article/details/7558868

19、ELL

安装中出现问题解决(中文)博客:https://www.codelast.com/%e5%8e%9f%e5%88%9b-%e5%9c%a8ubuntu-14-04%e7%b3%bb%e7%bb%9f%e4%b8%ad%e4%b8%baell%e5%ae%89%e8%a3%85python-3-6-%e9%80%9a%e8%bf%87miniconda/ 
https://www.codelast.com/%e5%8e%9f%e5%88%9b-%e5%9c%a8%e6%a0%91%e8%8e%93%e6%b4%be3%e4%b8%8a%e4%bd%bf%e7%94%a8%e5%be%ae%e8%bd%afell%e5%b5%8c%e5%85%a5%e5%bc%8f%e5%ad%a6%e4%b9%a0%e5%ba%931/

20、光流测速度

http://blog.csdn.net/chentravelling/article/details/50924144 
http://blog.csdn.net/taily_duan/article/details/51011288 
http://blog.csdn.net/zouxy09/article/details/8683859 
http://blog.csdn.net/dcrmg/article/details/52684477 
http://blog.csdn.net/crzy_sparrow/article/details/7407604 
加载深度信息求速度原理: 
这里写图片描述
这里写图片描述

21、识别走过的弯路:

【人体姿态】Stacked Hourglass算法详解 (torch代码):http://blog.csdn.net/shenxiaolu1984/article/details/51428392 
Object Detection︱RCNN、faster-RCNN框架的浅读与延伸内容笔记 : 
http://blog.csdn.net/roslei/article/details/73459873 
ipython-notebook caffe识别与可视化:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb#Classification:-Instant-Recognition-with-Caffe

22、语义分割与识别

FCN-github:https://github.com/shelhamer/fcn.berkeleyvision.org 
fcn-知乎:https://zhuanlan.zhihu.com/p/22976342 
FCN-CRF:https://zhuanlan.zhihu.com/p/22308032

23、deep compression与SqueezeNet

SqueezeNet-github:https://github.com/DeepScale/SqueezeNet 
Deep Compression阅读理解及Caffe源码修改 :http://blog.csdn.net/may0324/article/details/52935869 
阅读理解: 
http://blog.csdn.net/zijin0802034/article/details/53982812 
http://blog.csdn.net/boon_228/article/details/51718521 
http://blog.csdn.net/cyh_24/article/details/51708469 
http://blog.csdn.net/joshuaxx316/article/details/52514978 
压缩caffemodel:https://github.com/RalphMao/demo_nn_compress 
SqueezeNet+Faster-RCNN+OHEM:http://blog.csdn.net/u011956147/article/details/53714616

24、TFFRCNN(基于Faster-RCNN_TF修改)

https://github.com/CharlesShang/TFFRCNN,内含PVANET模型 
运行TFFRCNN:http://blog.csdn.net/yuexin2/article/details/75019330 
TFRRCNN训练自己的模型:http://blog.csdn.net/yuexin2/article/details/75025720

25、嵌入式网络

CNN 模型压缩与加速算法综述 :http://blog.csdn.net/QcloudCommunity/article/details/77719498 
YOLO对比SVM+HOG 耗时更短 处理更精确(附github资源):http://www.weiot.net/article-59672.html 
LCDet:http://blog.csdn.net/zhangjunhit/article/details/72831440 
PVANet(TFFRCNN中有):https://arxiv.org/pdf/1608.08021.pdf 
http://blog.csdn.net/wydbyxr/article/details/68931337 
mobilenet:http://blog.csdn.net/zchang81/article/details/73321202 
//(有实现链接)http://blog.csdn.net/mao_feng/article/details/75116085 
//论文翻译:https://baijiahao.baidu.com/s?id=1566004753349359&wfr=spider&for=pc 
ARM-NEON:http://blog.csdn.net/qiek/article/details/50900890 
http://blog.csdn.net/ljp12345/article/details/53490094 
popcnt:http://www.cnblogs.com/zyl910/archive/2012/11/02/testpopcnt.html

26、有用知乎

https://www.zhihu.com/question/39921464 
https://www.zhihu.com/question/53697001 
https://www.zhihu.com/question/27872849

27.卷积加速相关

http://blog.csdn.net/mao_kun/article/details/54882528 
http://blog.csdn.net/u010620604/article/details/52464529

28.CMakeLists

http://www.360doc.com/content/12/0507/10/9369336_209205930.shtml 
http://blog.csdn.net/zhubaohua_bupt/article/details/52760411

29.强化学习

david 9:http://nooverfit.com/wp/15-%E5%A2%9E%E5%BC%BA%E5%AD%A6%E4%B9%A0101-%E9%97%AA%E7%94%B5%E5%85%A5%E9%97%A8-reinforcement-learning/ 
精彩:http://www.cnblogs.com/jinxulin/p/3517377.html 
知乎大神:https://www.zhihu.com/question/41775291

30、3D-deeplearning-face_detector

https://zhuanlan.zhihu.com/p/24816781

31、xnor相关工程与讨论

https://github.com/allenai/XNOR-Net/issues 
https://github.com/jiecaoyu/XNOR-Net-PyTorch 
https://github.com/tensorflow/tensorflow/issues/1592 
https://github.com/MatthieuCourbariaux/BinaryNet 
https://github.com/loswensiana/BWN-XNOR-caffe/tree/master/examples/imagenet 
https://github.com/tensorflow/tensorflow/tree/master/third_party/eigen3/unsupported/Eigen/CXX11/src/FixedPoint 
☆修改梯度相关 http://blog.csdn.net/buyi_shizi/article/details/51512848 
http://blog.csdn.net/yihaizhiyan/article/details/44159063

32、FCN训练自己的数据集

详细版本:http://blog.csdn.net/jiongnima/article/details/78549326?locationNum=1&fps=1 
http://blog.csdn.net/zoro_lov3/article/details/74550735 
http://blog.csdn.net/z13653662052/article/details/70949440 
http://blog.csdn.net/supe_king/article/details/58121993 
http://blog.csdn.net/u010402786/article/details/72883421 
http://www.cnblogs.com/xuanxufeng/p/6243342.html 
https://github.com/315386775/FCN_train 
https://github.com/msracver/FCIS

33、服务器搭建

http://blog.csdn.net/totodum/article/details/51059380 
http://blog.csdn.net/fishman_yinwang/article/details/78029309 
http://blog.csdn.net/jiaojialulu/article/details/77430563 
34、推荐系统 
https://github.com/jfkirk/tensorrec 
https://github.com/bnak/Recommendations_Engine 
https://github.com/songgc/TF-recomm 
https://github.com/sonyisme/keras-recommendation 
https://github.com/geeky-bit/Recommendation_systems-using-SVD-KNN-etc 
https://github.com/amzn/amazon-dsstne 
recommendation decomposition

https://www.douban.com/note/510047571/ 
https://github.com/Lockvictor/MovieLens-RecSys

http://blog.csdn.net/u011467621/article/details/48624973 
https://github.com/joeyqzhou/recommendation-system

讲解:http://blog.csdn.net/joycewyj/article/details/51692976

https://github.com/chengstone/movie_recommender 
http://blog.csdn.net/chengcheng1394/article/details/78820529

35、caffe

https://github.com/loswensiana/BWN-XNOR-caffe 
添加新层: 
https://blog.csdn.net/shuzfan/article/details/51322976(cutoff) 
https://blog.csdn.net/wfei101/article/details/76735760(盗版) 
https://blog.csdn.net/kuaitoukid/article/details/41865803(maxout与NIN) 
https://blog.csdn.net/xizero00/article/details/52529341(图像缩放) 
https://blog.csdn.net/happyflyy/article/details/54866037(maxout) 
caffe函数解析: 
https://blog.csdn.net/seven_first/article/details/47378697

caffe卷积实现原理: 
https://blog.csdn.net/jiongnima/article/details/69055941 
im2col原理: 
https://blog.csdn.net/jiongnima/article/details/69736844

36、TernausNet

https://github.com/ternaus/TernausNet 
https://github.com/ternaus/robot-surgery-segmentation

37、caffe添加新层与实现原理

很多篇都有用:https://blog.csdn.net/tangwei2014?viewmode=contents 
添层(facenet):https://blog.csdn.net/langb2014/article/details/50489305 
https://blog.csdn.net/seven_first/article/details/50272005 
caffe源码解析:https://blog.csdn.net/seven_first/article/category/5721883

38、人脸画像

https://github.com/BoyuanJiang/Age-Gender-Estimate-TF

39、tensorflow-model2caffemodel

https://blog.csdn.net/jiongnima/article/category/7245212

40、聊天机器人汇总

https://github.com/fateleak/awesome-chatbot-list

41、SGM-NET:

github: 
https://github.com/dhernandez0/sgm 
https://github.com/fixstars/libSGM 
https://github.com/WanchaoYao/SGM 
博客: 
https://blog.csdn.net/zilanpotou182/article/details/73382412 
https://blog.csdn.net/wsj998689aa/article/details/49464017 
https://www.cnblogs.com/hrlnw/p/4746170.html 
https://blog.csdn.net/qq_31785865/article/details/78451880 
https://blog.csdn.net/laobai1015/article/details/52527233 
http://lib.csdn.net/article/datastructure/10208

42、caffe矩阵操作

cblas_sgemm:https://blog.csdn.net/ZhikangFu/article/details/78258393 
conv层讲解:https://blog.csdn.net/sinat_22336563/article/details/69808612 
caffe讲解全(1):https://blog.csdn.net/seven_first/article/details/47378697#1-caffecpugemm-%E5%87%BD%E6%95%B0 
caffe讲解全(2):https://blog.csdn.net/langb2014/article/details/51558515

caffe讲解全:https://blog.csdn.net/jiongnima/article/category/6436731

43、xnor新理解与新工程

pyrorch:https://github.com/jiecaoyu/XNOR-Net-PyTorch/tree/7f84f1bf6921bc99b05bbc869dddf2bd64989a40 
tensorflow:https://github.com/AngusG/tensorflow-xnor-bnn 
问题:https://github.com/jiecaoyu/XNOR-Net-PyTorch/issues/13 
反向传播:https://github.com/jiecaoyu/XNOR-Net-PyTorch/blob/master/notes/notes.pdf

44、多线程

boost::thread 
https://www.jianshu.com/p/0b2e360243f4 
https://www.jianshu.com/p/30e79d2a8f7d 
https://blog.csdn.net/zhuxiaoyang2000/article/details/6588031/

pthread 
http://www.runoob.com/cplusplus/cpp-multithreading.html 
https://blog.csdn.net/hudashi/article/details/7709413 
http://www.docin.com/p-65547314.html 
https://www.ibm.com/developerworks/cn/linux/l-pthred/index.html 
http://www.cppblog.com/saha/articles/189802.html

45、NEON

https://download.csdn.net/download/jieweijason/10200330 
https://developer.arm.com/technologies/neon/intrinsics 
https://blog.csdn.net/may0324/article/details/72847800 
https://www.jianshu.com/p/68879baa7c1f?from=timeline&isappinstalled=0

https://www.cnblogs.com/hrlnw/p/3767853.html 
https://www.cnblogs.com/hrlnw/p/3723072.html

46、MobileNet

prototxt: 
https://github.com/suzhenghang/MobileNetv2/tree/master/.gitignore 
https://github.com/austingg/MobileNet-v2-caffe 
mobilenet-sdd: 
https://github.com/PINTO0309/MobileNet-SSD 
https://github.com/PINTO0309/MobileNet-SSDLite-RealSense-TF

47、MobileNet/shuffleNet with YOLO/SSD

https://github.com/eric612/MobileNet-YOLO 
https://github.com/PINTO0309/MobileNet-SSD 
https://github.com/chuanqi305/MobileNet-SSD 
https://github.com/chuanqi305/MobileNetv2-SSDLite 
https://github.com/FreeApe/VGG-or-MobileNet-SSD 
https://github.com/farmingyard/ShuffleNet 
https://github.com/linchaozhang/shufflenet-ssd

https://github.com/chuanqi305/SqueezeNet-SSD 
https://github.com/ChenYingpeng/caffe-ssd-frameworks

48 嵌入式/压缩神经网络相关工作汇总

https://www.ctolib.com/ZhishengWang-Embedded-Neural-Network.html

 

 

 

 

本文转自:https://blog.csdn.net/l297969586/article/details/71159675

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值