m基于Yolov2深度学习网络的喝水行为检测系统matlab仿真,带GUI界面

目录

1.算法仿真效果

2.算法涉及理论知识概要

3.MATLAB核心程序

4.完整算法代码文件获得


1.算法仿真效果

matlab2022a仿真结果如下:

2.算法涉及理论知识概要

        深度学习是机器学习的一个子领域,其通过组合低层特征形成更加抽象的高层表示,以发现数据的分布式特征表示。在深度学习中,神经网络是最常用的模型之一。神经网络通过模拟人脑神经元的连接方式,构建一个高度复杂的网络结构来学习数据的表示和特征。Yolov2(You Only Look Once, version 2)是一种实时目标检测算法,其核心思想是将目标检测任务转换为一个回归问题来解决。Yolov2通过单次前向传播即可直接得到目标的边界框和类别概率。

        Yolov2采用Darknet-19作为特征提取网络,其结构是一个包含19个卷积层和5个最大池化层的深度卷积神经网络。Yolov2使用锚框(anchor boxes)来预测边界框。对于每个网格单元,Yolov2预测B个边界框,每个边界框包含5个参数:(x, y, w, h, c),分别表示边界框中心的坐标、宽、高和置信度。置信度反映了边界框内包含目标的可能性。
       基于Yolov2的喝水行为检测系统首先需要对喝水动作进行定义和标注,然后训练Yolov2模型来    识别这些动作。
       动作定义:定义喝水动作的关键帧,如拿起水杯、喝水、放下水杯等。
       数据标注:使用标注工具对视频帧中的喝水动作进行标注,生成训练所需的标签数据。
       使用标注好的数据集训练Yolov2模型。训练过程中,通过优化损失函数来调整网络参数,使得模型能够准确识别喝水动作。
       训练好的模型可以用于实时或离线的喝水行为检测。系统接收视频输入,通过Yolov2模型进行逐帧分析,识别出喝水动作,并输出检测结果。
       基于Yolov2深度学习网络的喝水行为检测系统能够有效识别喝水动作,为健康监测、智能家居等领域提供了新的解决方案。通过优化网络结构和损失函数,可以进一步提高系统的准确性和实时性。

3.MATLAB核心程序

global im;
global Predicted_Label;
cla (handles.axes1,'reset')
 
axes(handles.axes1);
set(handles.edit2,'string',num2str(0));


[filename,pathname]=uigetfile({'*.bmp;*.jpg;*.png;*.jpeg;*.tif'},'选择一个图片','F:\test');
str=[pathname filename];
% 判断文件是否为空,也可以不用这个操作!直接读入图片也可以的
% im = imread(str);
% imshow(im)
if isequal(filename,0)||isequal(pathname,0)
    warndlg('please select a picture first!','warning');
    return;
else
    im = imread(str);
    imshow(im);
end
 

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% global im;
%  
% 
% 
% [Predicted_Label, Probability] = classify(net, II);
% imshow(im);
global im;
global Predicted_Label;


load model.mat
img_size= [224,224];


axes(handles.axes1);

I               = imresize(im,img_size(1:2));
[bboxes,scores] = detect(detector,I,'Threshold',0.15);
flag=0;
if ~isempty(bboxes) % 如果检测到目标
    [Vs,Is] = max(scores);
    flag    = 1;
    I       = insertObjectAnnotation(I,'rectangle',bboxes(Is,:),Vs,LineWidth=2);% 在图像上绘制检测结果
end
imshow(I)

if flag==0
set(handles.edit2,'string','无喝水行为');
else
set(handles.edit2,'string','有喝水行为');
end
0Y_013m

4.完整算法代码文件获得

V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱C编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值