项目落地流程

1. 需求来源:boss客户客服运营甲方提出需求
2. 产出方案:产品经理收集需求,出产品需求文档(PRD)
3.需求评审:前后端、测试、PM一起过 PRD,有问题可以提出疑问,不合理的需求可以砍掉
4.技术方案评审:涵盖项目架构图、风险评估、时序图、类图、特殊名词、需求背景
5. 设计稿产出:Ui工程师出对应设计稿

6. 测试用例评审:测试工程师出相应的测试用例方案

7. 排工期:定义到每个人每个接口或页面的工时
8.接口文档产出:依据设计文档给出相应的接口细节,方便前端mock数据
9. 开发阶段:一般在最新的master 主分支 一般项目经理合并,迁出个特性分支 (feature/tag),如果是bug,迁出一 个紧急修复分支 (hotfix/tag)
10. 自测:代码开发完成后,使用 postman、apifox等接口工具调试接口
11. 联调阶段:把mock数据换点,尝试使用后端提供的数据,进行一个前后端的调试
12. 测试冒烟:联调结束,移交给测试工程师,进行白盒、黑盒、边界、压测、冒烟等等测试
13. 预发环境测试:部署在独立的环境,不受其他代码的干扰。需要从master拉出最新的分支,因为在开发阶段,可能其他人已经在master迭代。
14. 生产回归测试:预发结束,发布正式环境,也就是线上环境。发布成功后需观察日志一两个小时左右,如果没有异常就可以结束 有异常一键回滚

<think>好的,我现在需要处理用户关于制造业AIGC项目实施流程的问题。首先,我得明确用户的需求是什么。用户可能想了解如何在实际的制造业环境中应用AIGC技术,具体的步骤和流程是怎样的。他们可能已经知道AIGC在制造业中的重要性,但需要详细的实施指南。 接下来,我要回忆已有的知识,尤其是用户提供的引用内容。引用[1]提到PLC、MES、SCADA等生产环节的控制系统是关键,说明智能化生产流程是核心。引用[2]则涉及智能体在制造业中的应用,包括自动化机器人、智能决策系统等。这些信息有助于构建实施流程的框架。 然后,我需要考虑AIGC项目的实施通常包括哪些阶段。通常,任何技术项目的实施都会包括需求分析、方案设计、开发测试、部署优化等步骤。结合制造业的特殊性,可能需要加入生产流程分析、数据采集、系统集成等环节。此外,考虑到AIGC涉及生成式AI,数据准备和模型训练会是重点。 我需要确保每个步骤都具体且符合制造业的实际操作。例如,需求分析阶段需要明确业务场景,如质量检测或生产调度;数据准备阶段要处理工业数据的特点,如时序数据或传感器数据;模型开发可能需要定制化训练以适应特定任务。 同时,要参考用户提供的引用内容,强调生产控制系统的智能化,比如在系统集成阶段如何与MES、SCADA等系统对接,确保AIGC模型能够嵌入到现有的生产流程中,实现实时决策和优化。 还需要考虑用户可能的后续问题,比如实施中的挑战、如何评估效果、有哪些成功案例等。但根据当前问题,重点放在步骤和流程上,确保结构清晰,每个步骤都有具体说明,并自然地融入引用内容作为支持。 最后,检查是否符合系统级指令:使用正确的中文回答,行内公式用$...$,独立公式用$$...$$,生成相关问题,引用标识正确。确保没有使用Markdown,语言口语化,结构逻辑清晰。</think>制造业中AIGC(AI生成内容)项目的实施需要结合工业场景特点与AI技术特性。以下是关键实施步骤及流程分析: 1. **需求分析与场景定义** - 明确业务痛点(如生产参数优化、缺陷检测),确定AIGC应用目标 - 选择价值密度高的场景优先实施,例如工艺参数生成$f(x)=\max_{\theta} P(y|x;\theta)$[^1] - 评估现有基础设施(PLC/MES系统)的数据接口能力 2. **工业数据准备** - 构建多模态数据湖: $$D = \{X_t^{sensor}, Y_t^{QC}, Z_t^{log}\}_{t=1}^T$$ - 标注关键特征参数,处理时序数据非均衡问题 - 建立数据血缘追踪机制,确保训练数据可解释性 3. **模型开发与验证** - 采用迁移学习框架: ```python base_model = load_pretrained('industry-bert') fine_tune(base_model, domain_data, loss_fn=MAE+KLDiv) ``` - 设计数字孪生验证环境,测试模型输出与物理系统的兼容性 - 通过SCADA系统进行在线仿真验证 4. **系统集成部署** - 开发工业中间件实现AI模型与PLC/MES的协议转换 - 部署轻量化推理引擎,满足产线实时性要求 - 建立模型监控看板,追踪关键指标: | 指标 | 阈值 | |-------------|-----------| | 推理延迟 | <200ms | | 准确率 | >99.2% | 5. **持续优化迭代** - 构建反馈闭环系统,实现生产数据->模型更新->策略优化动态循环 - 应用联邦学习技术更新跨工厂模型参数 - 定期进行工艺知识图谱的版本升级[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值