目录
- 总习题七
- 2.以下两题给出四个结论,从中选出一个正确的结论:
- 3.求以下列各式所表示的函数为通解的微分方程:
- 4.求下列微分方程的通解:
- (3) d y d x = y 2 ( ln y − x ) ; \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{y}{2(\ln y-x)}; dxdy=2(lny−x)y;
- (4) d y d x + x y − x 3 y 3 = 0 ; \cfrac{\mathrm{d}y}{\mathrm{d}x}+xy-x^3y^3=0; dxdy+xy−x3y3=0;
- (5) y ′ ′ + y ′ 2 + 1 = 0 ; y''+y'^2+1=0; y′′+y′2+1=0;
- (9) ( y 4 − 3 x 2 ) d y + x y d x = 0 ; (y^4-3x^2)\mathrm{d}y+xy\mathrm{d}x=0; (y4−3x2)dy+xydx=0;
- (10) y ′ + x = x 2 + y . y'+x=\sqrt{x^2+y}. y′+x=x2+y.
- 5.求下列微分方程满足所给初值条件的特解:
- 12.求下列常系数线性微分方程组:
- (1) { d x d t + 2 d y d t + y = 0 , 3 d x d t + 2 x + 4 d y d t + 3 y = t ; \begin{cases}\cfrac{\mathrm{d}x}{\mathrm{d}t}+2\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=0,\\3\cfrac{\mathrm{d}x}{\mathrm{d}t}+2x+4\cfrac{\mathrm{d}y}{\mathrm{d}t}+3y=t;\end{cases} ⎩⎪⎨⎪⎧dtdx+2dtdy+y=0,3dtdx+2x+4dtdy+3y=t;
- (2) { d 2 x d t 2 + 2 d x d t + x + d y d t + y = 0 , d x d t + x + d 2 y d t 2 + 2 d y d t + y = e t . \begin{cases}\cfrac{\mathrm{d}^2x}{\mathrm{d}t^2}+2\cfrac{\mathrm{d}x}{\mathrm{d}t}+x+\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=0,\\\cfrac{\mathrm{d}x}{\mathrm{d}t}+x+\cfrac{\mathrm{d}^2y}{\mathrm{d}t^2}+2\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=e^t.\end{cases} ⎩⎪⎨⎪⎧dt2d2x+2dtdx+x+dtdy+y=0,dtdx+x+dt2d2y+2dtdy+y=et.
- 写在最后
总习题七
2.以下两题给出四个结论,从中选出一个正确的结论:
(1)设非齐次线性微分方程 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y′+P(x)y=Q(x)有两个不同的解: y 1 ( x ) y_1(x) y1(x)与 y 2 ( x ) y_2(x) y2(x), C C C为任意常数,则该方程的通解是( \quad ) ( A ) C [ y 1 ( x ) − y 2 ( x ) ] ( B ) y 1 ( x ) + C [ y 1 ( x ) − y 2 ( x ) ] ( C ) C [ y 1 ( x ) + C 2 ( x ) ] ( D ) y 1 ( x ) + C [ y 1 ( x ) + y 2 ( x ) ] \begin{aligned}&(A)C[y_1(x)-y_2(x)]\\&(B)y_1(x)+C[y_1(x)-y_2(x)]\\&(C)C[y_1(x)+C_2(x)]\\&(D)y_1(x)+C[y_1(x)+y_2(x)]\end{aligned} (A)C[y1(x)−y2(x)](B)y1(x)+C[y1(x)−y2(x)](C)C[y1(x)+C2(x)](D)y1(x)+C[y1(x)+y2(x)]
解 y 1 ( x ) − y 2 ( x ) y_1(x)-y_2(x) y1(x)−y2(x)是对应的齐次方程 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y′+P(x)y=Q(x)的非零解,从而由线性微分方程的性质定理知 C [ y 1 ( x ) − y 2 ( x ) ] C[y_1(x)-y_2(x)] C[y1(x)−y2(x)]是齐次方程的通解,再由线性微分方程解的结构定理知 y 1 ( x ) + C [ y 1 ( x ) − y 2 ( x ) ] y_1(x)+C[y_1(x)-y_2(x)] y1(x)+C[y1(x)−y2(x)]是原方程的解。故选(B)。(这道题主要利用了线性微分方程的结构定理求解)
3.求以下列各式所表示的函数为通解的微分方程:
(1) ( x + C ) 2 + y 2 = 1 ( 其中C为任意常数 ) (x+C)^2+y^2=1(\text{其中C为任意常数}) (x+C)2+y2=1(其中C为任意常数)
解 将
(
x
+
C
)
2
+
y
2
=
1
(x+C)^2+y^2=1
(x+C)2+y2=1两端关于
x
x
x求导,得
x
+
C
+
y
y
′
=
0.
x+C+yy'=0.
x+C+yy′=0.
即有
C
=
−
x
−
y
y
′
.
C=-x-yy'.
C=−x−yy′.
将其代入
(
x
+
C
)
2
+
y
2
=
1
(x+C)^2+y^2=1
(x+C)2+y2=1中,得
y
2
(
1
+
y
′
)
2
=
1.
y^2(1+y')^2=1.
y2(1+y′)2=1.
(这道题主要利用了求导的方法)
4.求下列微分方程的通解:
(3) d y d x = y 2 ( ln y − x ) ; \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{y}{2(\ln y-x)}; dxdy=2(lny−x)y;
解 原方程可表示为
d
x
d
y
+
2
y
x
=
2
ln
y
y
\cfrac{\mathrm{d}x}{\mathrm{d}y}+\cfrac{2}{y}x=\cfrac{2\ln y}{y}
dydx+y2x=y2lny,由一阶线性方程的通解公式,得
x
=
e
−
∫
2
y
d
y
(
∫
2
ln
y
y
e
∫
2
y
d
y
d
y
+
C
)
=
1
y
2
(
∫
2
y
ln
y
d
y
+
C
)
=
1
y
2
(
y
2
ln
y
)
\begin{aligned} x&=e^{-\int\frac{2}{y}\mathrm{d}y}\left(\displaystyle\int\cfrac{2\ln y}{y}e^{\int\frac{2}{y}\mathrm{d}y}\mathrm{d}y+C\right)\\ &=\cfrac{1}{y^2}\left(\displaystyle\int2y\ln y\mathrm{d}y+C\right)=\cfrac{1}{y^2}\left(y^2\ln y\right) \end{aligned}
x=e−∫y2dy(∫y2lnye∫y2dydy+C)=y21(∫2ylnydy+C)=y21(y2lny)
故原方程的通解为
(这道题利用了反向的求导)
(4) d y d x + x y − x 3 y 3 = 0 ; \cfrac{\mathrm{d}y}{\mathrm{d}x}+xy-x^3y^3=0; dxdy+xy−x3y3=0;
解 原方程为伯努利方程
y
′
+
x
y
=
x
3
y
3
y'+xy=x^3y^3
y′+xy=x3y3。该方程两端同除以
y
3
y^3
y3后成为
y
′
y
3
+
x
1
y
2
=
x
3
.
\cfrac{y'}{y^3}+x\cfrac{1}{y^2}=x^3.
y3y′+xy21=x3.
令
1
y
2
=
z
\cfrac{1}{y^2}=z
y21=z,则
−
2
y
′
y
3
=
z
′
-2\cfrac{y'}{y^3}=z'
−2y3y′=z′,且原方程化为
z
′
−
2
x
z
=
−
2
x
3
.
z'-2xz=-2x^3.
z′−2xz=−2x3.
得
z
=
e
−
∫
2
x
d
x
(
∫
−
2
x
3
e
∫
2
x
d
x
d
x
+
C
)
=
e
x
2
(
∫
−
2
x
3
e
−
x
2
d
x
+
C
)
=
e
x
2
(
x
2
e
−
x
2
−
∫
−
2
x
e
−
x
2
d
x
+
C
)
=
e
x
2
(
x
2
e
−
x
2
+
e
−
x
2
+
C
)
=
x
2
+
1
+
C
e
x
2
.
\begin{aligned} z&=e^{-\int2x\mathrm{d}x}\left(\displaystyle\int-2x^3e^{\int2x\mathrm{d}x}\mathrm{d}x+C\right)=e^{x^2}\left(\displaystyle\int-2x^3e^{-x^2}\mathrm{d}x+C\right)\\ &=e^{x^2}\left(x^2e^{-x^2}-\displaystyle\int-2xe^{-x^2}\mathrm{d}x+C\right)=e^{x^2}\left(x^2e^{-x^2}+e^{-x^2}+C\right)\\ &=x^2+1+Ce^{x^2}. \end{aligned}
z=e−∫2xdx(∫−2x3e∫2xdxdx+C)=ex2(∫−2x3e−x2dx+C)=ex2(x2e−x2−∫−2xe−x2dx+C)=ex2(x2e−x2+e−x2+C)=x2+1+Cex2.
代入
z
=
1
y
2
z=\cfrac{1}{y^2}
z=y21,即得原方程的通解
1
y
2
=
C
e
x
2
+
x
2
+
1.
\cfrac{1}{y^2}=Ce^{x^2}+x^2+1.
y21=Cex2+x2+1.
(这道题主要利用了微分方程公式)
(5) y ′ ′ + y ′ 2 + 1 = 0 ; y''+y'^2+1=0; y′′+y′2+1=0;
解 令
y
′
=
p
y'=p
y′=p,则
y
′
′
=
p
′
y''=p'
y′′=p′且方程成为
p
′
+
p
2
+
1
=
0.
p'+p^2+1=0.
p′+p2+1=0.
分离变量并积分
∫
d
p
1
+
p
2
=
−
∫
d
x
.
\displaystyle\int\cfrac{\mathrm{d}p}{1+p^2}=-\displaystyle\int\mathrm{d}x.
∫1+p2dp=−∫dx.
得
arctan
p
=
−
x
+
C
1
\arctan p=-x+C_1
arctanp=−x+C1,即
y
′
=
p
=
tan
(
−
x
+
C
1
)
.
y'=p=\tan(-x+C_1).
y′=p=tan(−x+C1).
于是得通解
y
=
∫
−
tan
(
x
−
C
1
)
d
x
=
ln
∣
cos
(
x
−
C
1
)
∣
+
C
2
.
\begin{aligned} y&=\displaystyle\int-\tan(x-C_1)\mathrm{d}x\\ &=\ln|\cos(x-C_1)|+C_2. \end{aligned}
y=∫−tan(x−C1)dx=ln∣cos(x−C1)∣+C2.
或写成
y
=
ln
∣
cos
(
x
+
C
1
)
∣
+
C
2
y=\ln|\cos(x+C_1)|+C_2
y=ln∣cos(x+C1)∣+C2。(这道题主要利用代换法)
(9) ( y 4 − 3 x 2 ) d y + x y d x = 0 ; (y^4-3x^2)\mathrm{d}y+xy\mathrm{d}x=0; (y4−3x2)dy+xydx=0;
解 原方程可改写为
d
x
d
y
−
3
y
x
=
−
y
3
x
−
1
\cfrac{\mathrm{d}x}{\mathrm{d}y}-\cfrac{3}{y}x=-y^3x^{-1}
dydx−y3x=−y3x−1,这是伯努利方程。在此方程两端同乘以
x
x
x,得
x
d
x
d
y
−
3
y
x
2
=
−
y
3
x\cfrac{\mathrm{d}x}{\mathrm{d}y}-\cfrac{3}{y}x^2=-y^3
xdydx−y3x2=−y3。
令
x
2
=
z
x^2=z
x2=z,则
d
z
d
y
=
2
x
d
x
d
y
\cfrac{\mathrm{d}z}{\mathrm{d}y}=2x\cfrac{\mathrm{d}x}{\mathrm{d}y}
dydz=2xdydx,且原方程化为
d
z
d
y
−
−
6
y
x
=
−
2
y
3
.
\cfrac{\mathrm{d}z}{\mathrm{d}y}--\cfrac{6}{y}x=-2y^3.
dydz−−y6x=−2y3.
解得
z
=
e
∫
6
y
d
y
(
∫
−
2
y
3
e
−
∫
6
y
d
y
d
y
+
C
)
=
y
6
(
∫
−
2
y
3
d
y
+
C
)
=
y
6
(
1
y
2
+
C
)
=
y
4
+
C
y
6
.
\begin{aligned} z&=e^{\int\frac{6}{y}\mathrm{d}y}\left(\displaystyle\int-2y^3e^{-\int\frac{6}{y}\mathrm{d}y}\mathrm{d}y+C\right)=y^6\left(\displaystyle\int-\cfrac{2}{y^3}\mathrm{d}y+C\right)\\ &=y^6\left(\cfrac{1}{y^2}+C\right)=y^4+Cy^6. \end{aligned}
z=e∫y6dy(∫−2y3e−∫y6dydy+C)=y6(∫−y32dy+C)=y6(y21+C)=y4+Cy6.
代入
z
=
x
2
z=x^2
z=x2,得原方程的通解
x
2
=
y
4
+
C
y
6
x^2=y^4+Cy^6
x2=y4+Cy6。(这道题主要利用了化简和凑整来求解)
(10) y ′ + x = x 2 + y . y'+x=\sqrt{x^2+y}. y′+x=x2+y.
解 令
u
=
x
2
+
y
u=\sqrt{x^2+y}
u=x2+y,即
y
=
u
2
−
x
2
y=u^2-x^2
y=u2−x2,则
d
y
d
x
=
2
u
d
u
d
x
−
2
x
\cfrac{\mathrm{d}y}{\mathrm{d}x}=2u\cfrac{\mathrm{d}u}{\mathrm{d}x}-2x
dxdy=2udxdu−2x。且原方程化为
2
u
d
u
d
x
−
x
=
u
2u\cfrac{\mathrm{d}u}{\mathrm{d}x}-x=u
2udxdu−x=u,即
d
u
d
x
−
1
2
(
x
u
)
=
1
2
\cfrac{\mathrm{d}u}{\mathrm{d}x}-\cfrac{1}{2}\left(\cfrac{x}{u}\right)=\cfrac{1}{2}
dxdu−21(ux)=21。
又令
x
u
=
v
\cfrac{x}{u}=v
ux=v,即
u
=
x
v
u=xv
u=xv,则
d
u
d
x
=
v
+
x
d
v
d
x
\cfrac{\mathrm{d}u}{\mathrm{d}x}=v+x\cfrac{\mathrm{d}v}{\mathrm{d}x}
dxdu=v+xdxdv。且原方程化为
v
+
x
d
v
d
x
−
1
2
v
=
1
2
.
v+x\cfrac{\mathrm{d}v}{\mathrm{d}x}-\cfrac{1}{2v}=\cfrac{1}{2}.
v+xdxdv−2v1=21.
分离变量得
v
d
v
2
v
2
−
v
−
1
=
−
1
2
d
x
x
\cfrac{v\mathrm{d}v}{2v^2-v-1}=-\cfrac{1}{2}\cfrac{\mathrm{d}x}{x}
2v2−v−1vdv=−21xdx。积分
−
1
2
ln
∣
x
∣
=
∫
v
d
v
2
v
2
−
v
−
1
=
1
3
(
∫
1
v
−
1
d
v
+
∫
1
2
v
+
1
d
v
)
=
1
3
[
ln
∣
v
−
1
∣
+
1
2
ln
∣
2
v
−
1
∣
]
+
C
1
.
\begin{aligned} -\cfrac{1}{2}\ln|x|&=\displaystyle\int\cfrac{v\mathrm{d}v}{2v^2-v-1}=\cfrac{1}{3}\left(\displaystyle\int\cfrac{1}{v-1}\mathrm{d}v+\displaystyle\int\cfrac{1}{2v+1}\mathrm{d}v\right)\\ &=\cfrac{1}{3}\left[\ln|v-1|+\cfrac{1}{2}\ln|2v-1|\right]+C_1. \end{aligned}
−21ln∣x∣=∫2v2−v−1vdv=31(∫v−11dv+∫2v+11dv)=31[ln∣v−1∣+21ln∣2v−1∣]+C1.
即
(
v
−
1
)
2
(
2
v
−
1
)
x
3
=
C
2
(
C
2
=
e
−
6
C
1
)
(v-1)^2(2v-1)x^3=C_2(C_2=e^{-6C_1})
(v−1)2(2v−1)x3=C2(C2=e−6C1)。代入
v
=
u
x
v=\cfrac{u}{x}
v=xu,得
2
u
3
−
3
x
(
x
2
+
y
)
+
x
3
=
C
2
.
2u^3-3x(x^2+y)+x^3=C_2.
2u3−3x(x2+y)+x3=C2.
再代入
u
=
x
2
+
y
u=\sqrt{x^2+y}
u=x2+y,得原方程的通解
2
(
x
2
+
y
)
3
2
−
3
x
(
x
2
+
y
)
+
x
3
=
C
2
.
2(x^2+y)^{\frac{3}{2}}-3x(x^2+y)+x^3=C_2.
2(x2+y)23−3x(x2+y)+x3=C2.
即
(
x
2
+
y
)
3
2
=
x
3
+
3
2
x
y
+
C
(
C
=
C
2
2
)
(x^2+y)^{\frac{3}{2}}=x^3+\cfrac{3}{2}xy+C\left(C=\cfrac{C_2}{2}\right)
(x2+y)23=x3+23xy+C(C=2C2)。(这道题利用换元法解积分)
5.求下列微分方程满足所给初值条件的特解:
(1) y 3 d x + 2 ( x 2 − x y 2 ) d y = 0 , x = 1 时 y = 1 ; y^3\mathrm{d}x+2(x^2-xy^2)\mathrm{d}y=0,x=1\text{时}y=1; y3dx+2(x2−xy2)dy=0,x=1时y=1;
解 原方程可以表示成伯努利方程
d
x
d
y
−
2
y
x
=
−
2
y
3
x
2
.
\cfrac{\mathrm{d}x}{\mathrm{d}y}-\cfrac{2}{y}x=-\cfrac{2}{y^3}x^2.
dydx−y2x=−y32x2.
即
x
−
2
d
x
d
y
−
2
y
x
−
1
=
−
2
y
3
.
x^{-2}\cfrac{\mathrm{d}x}{\mathrm{d}y}-\cfrac{2}{y}x^{-1}=-\cfrac{2}{y^3}.
x−2dydx−y2x−1=−y32.
令
z
=
x
−
1
z=x^{-1}
z=x−1,则
d
z
d
y
=
−
x
−
2
d
x
d
y
\cfrac{\mathrm{d}z}{\mathrm{d}y}=-x^{-2}\cfrac{\mathrm{d}x}{\mathrm{d}y}
dydz=−x−2dydx,且原方程化为一阶线性方程
d
z
d
y
d
z
d
y
+
2
y
z
=
2
y
3
.
\cfrac{\mathrm{d}z}{\mathrm{d}y}\cfrac{\mathrm{d}z}{\mathrm{d}y}+\cfrac{2}{y}z=\cfrac{2}{y^3}.
dydzdydz+y2z=y32.
解得
z
=
e
−
∫
2
y
d
y
(
∫
2
y
3
e
∫
2
y
d
y
d
y
+
C
)
=
1
y
2
(
∫
2
y
d
y
+
C
)
=
1
y
2
(
2
ln
∣
y
∣
+
C
)
.
\begin{aligned} z&=e^{-\int\frac{2}{y}\mathrm{d}y}\left(\displaystyle\int\cfrac{2}{y^3}e^{\int\frac{2}{y}\mathrm{d}y}\mathrm{d}y+C\right)=\cfrac{1}{y^2}\left(\displaystyle\int\cfrac{2}{y}\mathrm{d}y+C\right)\\ &=\cfrac{1}{y^2}\left(2\ln|y|+C\right). \end{aligned}
z=e−∫y2dy(∫y32e∫y2dydy+C)=y21(∫y2dy+C)=y21(2ln∣y∣+C).
将
z
=
x
−
1
z=x^{-1}
z=x−1代入上式,得
x
−
1
=
1
y
2
(
2
ln
∣
y
∣
+
C
)
x^{-1}=\cfrac{1}{y^2}\left(2\ln|y|+C\right)
x−1=y21(2ln∣y∣+C),即原方程通解
y
2
=
x
(
2
ln
∣
y
∣
+
C
)
.
y^2=x\left(2\ln|y|+C\right).
y2=x(2ln∣y∣+C).
由初值条件
x
=
1
x=1
x=1,
y
=
1
y=1
y=1,得
C
=
1
C=1
C=1,故所求特解为
y
2
=
x
(
2
ln
∣
y
∣
+
1
)
.
y^2=x\left(2\ln|y|+1\right).
y2=x(2ln∣y∣+1).
(这道题主要利用了伯努利方程的解法求解)
(3) 2 y ′ ′ − sin 2 y = 0 , x = 0 时 y = π 2 , y ′ = 1 ; 2y''-\sin2y=0,x=0\text{时}y=\cfrac{\pi}{2},y'=1; 2y′′−sin2y=0,x=0时y=2π,y′=1;
解 在方程
2
y
′
′
−
sin
2
y
=
0
2y''-\sin2y=0
2y′′−sin2y=0两端同乘以
y
′
y'
y′,则有
2
y
′
y
′
′
−
sin
2
y
y
′
=
0
2y'y''-\sin2yy'=0
2y′y′′−sin2yy′=0
即
(
y
′
2
+
1
2
cos
2
y
)
′
=
0.
\left(y'^2+\cfrac{1}{2}\cos2y\right)'=0.
(y′2+21cos2y)′=0.
于是
y
′
2
+
1
2
cos
2
y
=
C
1
.
y'^2+\cfrac{1}{2}\cos2y=C_1.
y′2+21cos2y=C1.
代入初值条件
y
=
π
2
y=\cfrac{\pi}{2}
y=2π,
y
′
=
1
y'=1
y′=1,得
C
1
=
1
2
C_1=\cfrac{1}{2}
C1=21。故有
y
′
2
+
1
2
cos
2
y
=
1
2
y'^2+\cfrac{1}{2}\cos2y=\cfrac{1}{2}
y′2+21cos2y=21,即
y
′
2
=
1
2
−
1
2
cos
2
y
=
sin
2
y
.
y'^2=\cfrac{1}{2}-\cfrac{1}{2}\cos2y=\sin^2y.
y′2=21−21cos2y=sin2y.
并因
y
=
π
2
y=\cfrac{\pi}{2}
y=2π时,,故上式开方后取
y
′
=
sin
y
.
y'=\sin y.
y′=siny.
分离变量并积分
∫
d
y
sin
y
=
∫
d
x
.
\displaystyle\int\cfrac{\mathrm{d}y}{\sin y}=\displaystyle\int\mathrm{d}x.
∫sinydy=∫dx.
得
ln
tan
y
2
=
x
+
C
2
.
\ln\tan\cfrac{y}{2}=x+C_2.
lntan2y=x+C2.
代入初值条件
x
=
0
x=0
x=0,
y
=
π
2
y=\cfrac{\pi}{2}
y=2π,得
C
2
=
0
C_2=0
C2=0,故所求特解为
ln
tan
y
2
=
x
\ln\tan\cfrac{y}{2}=x
lntan2y=x,即
y
=
2
arctan
e
x
.
y=2\arctan e^x.
y=2arctanex.
(这道题主要利用了凑整的方法求解)
12.求下列常系数线性微分方程组:
(1) { d x d t + 2 d y d t + y = 0 , 3 d x d t + 2 x + 4 d y d t + 3 y = t ; \begin{cases}\cfrac{\mathrm{d}x}{\mathrm{d}t}+2\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=0,\\3\cfrac{\mathrm{d}x}{\mathrm{d}t}+2x+4\cfrac{\mathrm{d}y}{\mathrm{d}t}+3y=t;\end{cases} ⎩⎪⎨⎪⎧dtdx+2dtdy+y=0,3dtdx+2x+4dtdy+3y=t;
解 记
D
=
d
d
t
D=\cfrac{\mathrm{d}}{\mathrm{d}t}
D=dtd,方程组可表示为
{
D
x
+
(
2
D
+
1
)
y
=
0
,
(
1
)
(
3
D
+
2
)
x
+
(
4
D
+
3
)
y
=
t
.
(
2
)
\begin{cases} Dx+(2D+1)y=0,&(1)\\ (3D+2)x+(4D+3)y=t.& (2) \end{cases}
{Dx+(2D+1)y=0,(3D+2)x+(4D+3)y=t.(1)(2)
则有
∣
D
2
D
+
1
3
D
+
2
4
D
+
3
∣
x
=
∣
0
2
D
+
1
t
4
D
+
3
∣
.
\begin{vmatrix} D&2D+1\\ 3D+2&4D+3 \end{vmatrix}x= \begin{vmatrix} 0&2D+1\\ t&4D+3 \end{vmatrix}.
∣∣∣∣D3D+22D+14D+3∣∣∣∣x=∣∣∣∣0t2D+14D+3∣∣∣∣.
即
(
2
D
2
+
4
D
+
2
)
x
=
−
t
−
2.
(3)
(2D^2+4D+2)x=-t-2.\tag{3}
(2D2+4D+2)x=−t−2.(3)
方程(3)对应齐次方程的特征方程为
2
r
2
+
4
r
+
2
=
0
2r^2+4r+2=0
2r2+4r+2=0,有根
r
1
,
2
=
−
1
r_{1,2}=-1
r1,2=−1。因
f
(
t
)
=
−
t
−
2
f(t)=-t-2
f(t)=−t−2,故令
x
∗
=
A
t
+
B
x*=At+B
x∗=At+B是(3)的特解,代入(3)中,即得
A
=
1
2
A=\cfrac{1}{2}
A=21,
B
=
0
B=0
B=0。故方程(3)有通解
x
=
(
C
1
+
C
2
t
)
e
−
t
+
1
2
t
.
x=(C_1+C_2t)e^{-t}+\cfrac{1}{2}t.
x=(C1+C2t)e−t+21t.
又由
(
2
)
−
2
∗
(
1
)
(2)-2*(1)
(2)−2∗(1)可得
y
=
−
(
D
+
t
)
x
+
t
=
−
(
C
1
+
C
2
+
C
2
t
)
e
−
t
−
1
2
.
\begin{aligned} y&=-(D+t)x+t\\ &=-(C_1+C_2+C_2t)e^{-t}-\cfrac{1}{2}. \end{aligned}
y=−(D+t)x+t=−(C1+C2+C2t)e−t−21.
故方程组的通解为
{
x
=
(
C
1
+
C
2
t
)
e
−
t
+
1
2
t
,
y
=
−
(
C
1
+
C
2
+
C
2
t
)
e
−
t
−
1
2
.
\begin{cases} x=(C_1+C_2t)e^{-t}+\cfrac{1}{2}t,\\ y=-(C_1+C_2+C_2t)e^{-t}-\cfrac{1}{2}. \end{cases}
⎩⎪⎨⎪⎧x=(C1+C2t)e−t+21t,y=−(C1+C2+C2t)e−t−21.
(这道题主要利用了欧拉方程的解法求解)
(2) { d 2 x d t 2 + 2 d x d t + x + d y d t + y = 0 , d x d t + x + d 2 y d t 2 + 2 d y d t + y = e t . \begin{cases}\cfrac{\mathrm{d}^2x}{\mathrm{d}t^2}+2\cfrac{\mathrm{d}x}{\mathrm{d}t}+x+\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=0,\\\cfrac{\mathrm{d}x}{\mathrm{d}t}+x+\cfrac{\mathrm{d}^2y}{\mathrm{d}t^2}+2\cfrac{\mathrm{d}y}{\mathrm{d}t}+y=e^t.\end{cases} ⎩⎪⎨⎪⎧dt2d2x+2dtdx+x+dtdy+y=0,dtdx+x+dt2d2y+2dtdy+y=et.
解 记
D
=
d
d
t
D=\cfrac{\mathrm{d}}{\mathrm{d}t}
D=dtd,方程组可表示为
{
(
D
2
+
2
D
+
1
)
x
+
(
D
+
1
)
y
=
0
,
(
D
+
1
)
x
+
(
D
2
+
2
D
+
1
)
y
=
e
t
.
\begin{cases} (D^2+2D+1)x+(D+1)y=0,\\ (D+1)x+(D^2+2D+1)y=e^t. \end{cases}
{(D2+2D+1)x+(D+1)y=0,(D+1)x+(D2+2D+1)y=et.
即
{
(
D
+
1
)
2
x
+
(
D
+
1
)
y
=
0
,
(
1
)
(
D
+
1
)
x
+
(
D
+
1
)
2
y
=
e
t
.
(
2
)
\begin{cases} (D+1)^2x+(D+1)y=0,&(1)\\ (D+1)x+(D+1)^2y=e^t.& (2) \end{cases}
{(D+1)2x+(D+1)y=0,(D+1)x+(D+1)2y=et.(1)(2)
则有
∣
(
D
+
1
)
2
D
+
1
D
+
1
(
D
+
1
)
2
∣
x
=
∣
0
D
+
1
e
t
(
D
+
1
)
2
∣
.
\begin{vmatrix} (D+1)^2&D+1\\ D+1&(D+1)^2 \end{vmatrix}x= \begin{vmatrix} 0&D+1\\ e^t&(D+1)^2 \end{vmatrix}.
∣∣∣∣(D+1)2D+1D+1(D+1)2∣∣∣∣x=∣∣∣∣0etD+1(D+1)2∣∣∣∣.
即
(
D
3
+
3
D
2
+
2
D
)
x
=
−
e
−
t
.
(3)
(D^3+3D^2+2D)x=-e^{-t}.\tag{3}
(D3+3D2+2D)x=−e−t.(3)
方程(3)对应的齐次方程的特征方程为
r
(
r
2
+
3
r
+
2
=
0
)
r(r^2+3r+2=0)
r(r2+3r+2=0),有根
r
1
=
0
r_1=0
r1=0,
r
2
=
−
1
r_2=-1
r2=−1,
r
3
=
−
2
r_3=-2
r3=−2。而
f
(
t
)
=
−
e
t
f(t)=-e^t
f(t)=−et,
λ
=
1
\lambda=1
λ=1不是特征方程的根。故令
x
∗
=
A
e
t
x^*=Ae^t
x∗=Aet是方程(3)的特解,代入(3)中并消去
e
t
e^t
et,可得
A
=
−
1
6
A=-\cfrac{1}{6}
A=−61,即
x
∗
=
−
1
6
e
t
x^*=-\cfrac{1}{6}e^t
x∗=−61et,于是方程(3)的通解为
x
=
C
1
+
C
2
e
−
t
+
C
3
e
−
2
t
−
1
6
.
x=C_1+C_2e^{-t}+C_3e^{-2t}-\cfrac{1}{6}.
x=C1+C2e−t+C3e−2t−61.
又由方程(1)得
(
D
+
1
)
y
=
−
(
D
+
1
)
2
x
=
−
D
2
x
−
2
D
−
x
=
−
C
1
−
C
3
e
−
2
t
+
2
3
e
t
.
\begin{aligned} (D+1)y&=-(D+1)^2x=-D^2x-2D-x\\ &=-C_1-C_3e^{-2t}+\cfrac{2}{3}e^t. \end{aligned}
(D+1)y=−(D+1)2x=−D2x−2D−x=−C1−C3e−2t+32et.
即
y
′
+
y
=
−
C
1
−
C
3
e
−
2
t
+
2
3
e
t
y'+y=-C_1-C_3e^{-2t}+\cfrac{2}{3}e^t
y′+y=−C1−C3e−2t+32et,可解得
y
=
e
−
∫
d
t
[
∫
(
−
C
1
−
C
3
e
−
2
t
+
2
3
e
t
)
e
∫
d
t
d
t
+
C
4
]
=
e
−
t
[
∫
(
−
C
1
e
−
t
−
C
3
e
−
t
+
2
3
e
2
t
)
d
t
+
C
4
]
=
−
C
1
+
C
3
e
−
2
t
+
1
3
e
t
+
C
4
e
−
t
.
\begin{aligned} y&=e^{-\int\mathrm{d}t}\left[\displaystyle\int\left(-C_1-C_3e^{-2t}+\cfrac{2}{3}e^t\right)e^{\int\mathrm{d}t}\mathrm{d}t+C_4\right]\\ &=e^{-t}\left[\displaystyle\int\left(-C_1e^{-t}-C_3e^{-t}+\cfrac{2}{3}e^{2t}\right)\mathrm{d}t+C_4\right]\\ &=-C_1+C_3e^{-2t}+\cfrac{1}{3}e^t+C_4e^{-t}. \end{aligned}
y=e−∫dt[∫(−C1−C3e−2t+32et)e∫dtdt+C4]=e−t[∫(−C1e−t−C3e−t+32e2t)dt+C4]=−C1+C3e−2t+31et+C4e−t.
故方程组的通解为
{
x
=
C
1
+
C
2
e
−
t
+
C
3
e
−
2
t
−
1
6
,
y
=
−
C
1
+
C
3
e
−
2
t
+
1
3
e
t
+
C
4
e
−
t
.
\begin{cases} x=C_1+C_2e^{-t}+C_3e^{-2t}-\cfrac{1}{6},\\ y=-C_1+C_3e^{-2t}+\cfrac{1}{3}e^t+C_4e^{-t}. \end{cases}
⎩⎪⎨⎪⎧x=C1+C2e−t+C3e−2t−61,y=−C1+C3e−2t+31et+C4e−t.
(这道题主要利用了欧拉方程和行列式的解法)
写在最后
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。
另,本文接自《第七章 微分方程(一)》,传送门在这里。