概率论与数理统计张宇9讲 第六讲 随机变量的数字特征

习题六

6.10

(1)设 X X X为随机变量, P { ∣ X − E ( X ) ∣ < ϵ } ⩾ 0.9 , D ( X ) = 0.009 P\{|X-E(X)|<\epsilon\}\geqslant0.9,D(X)=0.009 P{ XE(X)<ϵ}0.9,D(X)=0.009,试用切比雪夫不等式估计 ϵ \epsilon ϵ的取值;

  应用切比雪夫不等式 P { ∣ X − E ( X ) ∣ < ϵ } ⩾ 1 − D ( X ) ϵ 2 P\{|X-E(X)|<\epsilon\}\geqslant1-\cfrac{D(X)}{\epsilon^2} P{ XE(X)<ϵ}1ϵ2D(X)求解。由题设得
P { ∣ X − E ( X ) ∣ < ϵ } ⩾ 1 − 0.009 ϵ 2 ⩾ 0.9 , ϵ 2 ⩾ 0.09 , ϵ ⩾ 0.3. P\{|X-E(X)|<\epsilon\}\geqslant1-\cfrac{0.009}{\epsilon^2}\geqslant0.9,\quad\epsilon^2\geqslant0.09,\quad\epsilon\geqslant0.3. P{ XE(X)<ϵ}1ϵ20.0090.9,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值