目录
- 习题六
-
- 6.10
-
- (1)设 X X X为随机变量, P { ∣ X − E ( X ) ∣ < ϵ } ⩾ 0.9 , D ( X ) = 0.009 P\{|X-E(X)|<\epsilon\}\geqslant0.9,D(X)=0.009 P{ ∣X−E(X)∣<ϵ}⩾0.9,D(X)=0.009,试用切比雪夫不等式估计 ϵ \epsilon ϵ的取值;
- (2)假设每次试验事件 A A A发生的概率都是 p ( 0 < p < 1 ) p(0<p<1) p(0<p<1),现进行 1000 1000 1000次独立重复实验,用事件 A A A发生的频率估计概率 p p p。试用切比雪夫不等式求这种估计所产生的误差小于 10 % 10\% 10%的概率。
- 新版例题六
- 新版习题六
- 写在最后
习题六
6.10
(1)设 X X X为随机变量, P { ∣ X − E ( X ) ∣ < ϵ } ⩾ 0.9 , D ( X ) = 0.009 P\{|X-E(X)|<\epsilon\}\geqslant0.9,D(X)=0.009 P{ ∣X−E(X)∣<ϵ}⩾0.9,D(X)=0.009,试用切比雪夫不等式估计 ϵ \epsilon ϵ的取值;
解 应用切比雪夫不等式 P { ∣ X − E ( X ) ∣ < ϵ } ⩾ 1 − D ( X ) ϵ 2 P\{|X-E(X)|<\epsilon\}\geqslant1-\cfrac{D(X)}{\epsilon^2} P{
∣X−E(X)∣<ϵ}⩾1−ϵ2D(X)求解。由题设得
P { ∣ X − E ( X ) ∣ < ϵ } ⩾ 1 − 0.009 ϵ 2 ⩾ 0.9 , ϵ 2 ⩾ 0.09 , ϵ ⩾ 0.3. P\{|X-E(X)|<\epsilon\}\geqslant1-\cfrac{0.009}{\epsilon^2}\geqslant0.9,\quad\epsilon^2\geqslant0.09,\quad\epsilon\geqslant0.3. P{
∣X−E(X)∣<ϵ}⩾1−ϵ20.009⩾0.9,