张宇1000题概率论与数理统计 第六章 数字特征

目录

A A A

24.二维正态分布一般表示为 N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) N(\mu_1,\mu_2;\sigma^2_1,\sigma^2_2;\rho) N(μ1,μ2;σ12,σ22;ρ),设 ( X , Y ) ∼ N ( 1 , 1 ; 4 , 9 ; 0.5 ) (X,Y)\sim N(1,1;4,9;0.5) (X,Y)N(1,1;4,9;0.5),令 Z = 2 X − Y Z=2X-Y Z=2XY,则 Z Z Z Y Y Y的相关系数为______。

  由 ( X , Y ) ∼ N ( 1 , 1 ; 4 , 9 ; 0.5 ) (X,Y)\sim N(1,1;4,9;0.5) (X,Y)N(1,1;4,9;0.5)
E ( X ) = 1 , E ( Y ) = 1 , D ( X ) = 4 , D ( Y ) = 9 , ρ X Y = 0.5 , C o v ( Z , Y ) = C o v ( 2 X − Y , Y ) = 2 C o v ( X , Y ) − C o v ( Y , Y ) = 2 ρ X Y D ( X ) D ( Y ) − D ( Y ) = 2 × 0.5 × 4 × 9 − 9 = − 3 , D ( Z ) = D ( 2 X − Y ) = 4 D ( X ) + D ( Y ) − 2 C o v ( 2 X , Y ) = 4 × 4 + 9 − 4 × 0.5 × 4 × 9 = 13 , ρ Z Y = C o v ( Z , Y ) D ( Z ) D ( Y ) = − 3 13 × 3 = − 1 13 . E(X)=1,E(Y)=1,D(X)=4,D(Y)=9,\rho_{XY}=0.5,\\ \begin{aligned} \mathrm{Cov}(Z,Y)&=\mathrm{Cov}(2X-Y,Y)=2\mathrm{Cov}(X,Y)-\mathrm{Cov}(Y,Y)\\ &=2\rho_{XY}\sqrt{D(X)D(Y)}-D(Y)\\ &=2\times0.5\times\sqrt{4\times9}-9=-3, \end{aligned}\\ \begin{aligned} D(Z)&=D(2X-Y)=4D(X)+D(Y)-2\mathrm{Cov}(2X,Y)\\ &=4\times4+9-4\times0.5\times\sqrt{4\times9}=13, \end{aligned}\\ \rho_{ZY}=\cfrac{\mathrm{Cov}(Z,Y)}{\sqrt{D(Z)}\sqrt{D(Y)}}=\cfrac{-3}{\sqrt{13}\times3}=-\cfrac{1}{\sqrt{13}}. E(X)=1,E(Y)=1,D(X)=4,D(Y)=9,ρXY=0.5,Cov(Z,Y)=Cov(2XY,Y)=2Cov(X,Y)Cov(Y,Y)=2ρXYD(X)D(Y) D(Y)=2×0.5×4×9 9=3,D(Z)=D(2XY)=4D(X)+D(Y)2Cov(2X,Y)=4×4+94×0.5×4×9 =13,ρZY=D(Z) D(Y) Cov(Z,Y)=13 ×33=13 1.
这道题主要利用了协方差求解

B B B

2.设随机变量 X X X [ − 1 , 1 ] [-1,1] [1,1]上服从均匀分布, Y = X 3 Y=X^3 Y=X3,则 X X X Y Y Y(  )。
( A ) (A) (A)不相关且相互独立;
( B ) (B) (B)不相关且相互不独立;
( C ) (C) (C)相关且相互独立;
( D ) (D) (D)相关且相互不独立。

  由题设, X ∼ U [ − 1 , 1 ] X\sim U[-1,1] XU[1,1],知其概率密度为 f ( x ) = { 1 2 , − 1 ⩽ x ⩽ 1 , 0 , 其 他 , f(x)=\begin{cases}\cfrac{1}{2},&-1\leqslant x\leqslant1,\\0,&其他,\end{cases} f(x)=21,0,1x1,,并有 E ( X ) = 0 , E ( X Y ) = ∫ − ∞ + ∞ x 4 f ( z ) d x = ∫ − 1 1 1 2 x 4 d x = 1 5 ≠ 0 E(X)=0,E(XY)=\displaystyle\int^{+\infty}_{-\infty}x^4f(z)\mathrm{d}x=\displaystyle\int^1_{-1}\cfrac{1}{2}x^4\mathrm{d}x=\cfrac{1}{5}\ne0 E(X)=0,E(XY)=+x4f(z)dx=1121x4dx=51=0,有 E ( X Y ) ≠ E ( X ) E ( Y ) E(XY)\ne E(X)E(Y) E(XY)=E(X)E(Y),从而知, X X X Y Y Y必相关,从而相互不独立,故选 ( D ) (D) (D)。(这道题主要利用了定义求解

3.设随机变量 X ∼ B ( 4 , 2 3 ) , Y ∼ B ( 8 , 4 5 ) X\sim B\left(4,\cfrac{2}{3}\right),Y\sim B\left(8,\cfrac{4}{5}\right) XB(4,32),YB(8,54),且相关系数 ρ X Y = − 1 \rho_{XY}=-1 ρXY=1,则(  )。
( A ) P { Y = − 1.2 X − 9.6 } = 1 ; (A)P\{Y=-1.2X-9.6\}=1; (A)P{ Y=1.2X9.6}=1;
( B ) P { Y = − 1.2 X + 9.6 } = 1 ; (B)P\{Y=-1.2X+9.6\}=1; (B)P{ Y=1.2X+9.6}=1;
( C ) P { Y = 1.2 X − 3.2 } = 1 ; (C)P\{Y=1.2X-3.2\}=1; (C)P{ Y=1.2X3.2}=1;
( D ) P { Y = 1.2 X + 3.2 } = 1. (D)P\{Y=1.2X+3.2\}=1. (D)P{ Y=1.2X+3.2}=1.

  根据相关性的概念,由题设,若相关系数 ρ X Y = − 1 \rho_{XY}=-1 ρXY=1,则存在常数 a , b a,b a,b使 P { Y = a X + b } = 1 ( a < 0 ) P\{Y=aX+b\}=1(a<0) P{ Y=aX+b}=1(a<0)。又线性函数关系中, X X X Y Y Y应同时满足满足题中的分布,于是,由 X ∼ B ( 4 , 2 3 ) , Y ∼ B ( 8 , 4 5 ) X\sim B\left(4,\cfrac{2}{3}\right),Y\sim B\left(8,\cfrac{4}{5}\right) XB(4,32),YB(8,54),有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值