目录
- A A A组
- B B B组
-
- 2.设随机变量 X X X在 [ − 1 , 1 ] [-1,1] [−1,1]上服从均匀分布, Y = X 3 Y=X^3 Y=X3,则 X X X与 Y Y Y( )。
( A ) (A) (A)不相关且相互独立;
( B ) (B) (B)不相关且相互不独立;
( C ) (C) (C)相关且相互独立;
( D ) (D) (D)相关且相互不独立。 - 3.设随机变量 X ∼ B ( 4 , 2 3 ) , Y ∼ B ( 8 , 4 5 ) X\sim B\left(4,\cfrac{2}{3}\right),Y\sim B\left(8,\cfrac{4}{5}\right) X∼B(4,32),Y∼B(8,54),且相关系数 ρ X Y = − 1 \rho_{XY}=-1 ρXY=−1,则( )。
( A ) P { Y = − 1.2 X − 9.6 } = 1 ; (A)P\{Y=-1.2X-9.6\}=1; (A)P{ Y=−1.2X−9.6}=1;
( B ) P { Y = − 1.2 X + 9.6 } = 1 ; (B)P\{Y=-1.2X+9.6\}=1; (B)P{ Y=−1.2X+9.6}=1;
( C ) P { Y = 1.2 X − 3.2 } = 1 ; (C)P\{Y=1.2X-3.2\}=1; (C)P{ Y=1.2X−3.2}=1;
( D ) P { Y = 1.2 X + 3.2 } = 1. (D)P\{Y=1.2X+3.2\}=1. (D)P{ Y=1.2X+3.2}=1. - 5.设连续型随机变量 X X X的概率密度非零区域为 [ − 1 , 1 ] [-1,1] [−1,1],则下列不一定成立的是( )。
( A ) ∣ E ( X ) ∣ ⩽ 1 ; (A)|E(X)|\leqslant1; (A)∣E(X)∣⩽1;
( B ) E ( X 2 ) ⩽ 1 ; (B)E(X^2)\leqslant1; (B)E(X2)⩽1;
( C ) D ( X ) ⩽ 1 ; (C)D(X)\leqslant1; (C)D(X)⩽1;
( D ) E ( X ) = 0. (D)E(X)=0. (D)E(X)=0. - 9.设 X X X为连续型随机变量,方差存在,则对于任意常数 C C C和 ϵ > 0 \epsilon>0 ϵ>0,必有( )。
( A ) P { ∣ X − C ∣ ⩾ ϵ } = E ( ∣ X − C ∣ ) ϵ ; (A)P\{|X-C|\geqslant\epsilon\}=\cfrac{E(|X-C|)}{\epsilon}; (A)P{ ∣X−C∣⩾ϵ}=ϵE(∣X−C∣);
( B ) P { ∣ X − C ∣ ⩾ ϵ } ⩾ E ( ∣ X − C ∣ ) ϵ ; (B)P\{|X-C|\geqslant\epsilon\}\geqslant\cfrac{E(|X-C|)}{\epsilon}; (B)P{ ∣X−C∣⩾ϵ}⩾ϵE(∣X−C∣);
( C ) P { ∣ X − C ∣ ⩾ ϵ } ⩽ E ( ∣ X − C ∣ ) ϵ ; (C)P\{|X-C|\geqslant\epsilon\}\leqslant\cfrac{E(|X-C|)}{\epsilon}; (C)P{ ∣X−C∣⩾ϵ}⩽ϵE(∣X−C∣);
( D ) P { ∣ X − C ∣ ⩾ ϵ } ⩽ D ( X ) ϵ . (D)P\{|X-C|\geqslant\epsilon\}\leqslant\cfrac{D(X)}{\epsilon}. (D)P{ ∣X−C∣⩾ϵ}⩽ϵD(X). - 16.独立重复试验中事件 A A A发生的概率为 1 3 \cfrac{1}{3} 31,若随机变量 X X X表示事件 A A A第一次发生时前面已发生的试验次数,则 E ( X ) = E(X)= E(X)=______。
- 2.设随机变量 X X X在 [ − 1 , 1 ] [-1,1] [−1,1]上服从均匀分布, Y = X 3 Y=X^3 Y=X3,则 X X X与 Y Y Y( )。
- C C C组
-
- 2.设 X X X是随机变量, E ( X ) > 0 E(X)>0 E(X)>0,且 E ( X 2 ) = 0.7 , D ( X ) = 0.2 E(X^2)=0.7,D(X)=0.2 E(X2)=0.7,D(X)=0.2,则以下各式成立的是( )。
( A ) P { − 1 2 < X < 3 2 } ⩾ 0.2 ; (A)P\left\{-\cfrac{1}{2}<X<\cfrac{3}{2}\right\}\geqslant0.2; (A)P{ −21<X<23}⩾0.2;
( B ) P { X ⩾ 2 } ⩾ 0.6 ; (B)P\left\{X\geqslant\sqrt{2}\right\}\geqslant0.6; (B)P{ X⩾2}⩾0.6;
( C ) P { 0 < X < 2 } ⩾ 0.6 ; (C)P\left\{0<X<\sqrt{2}\right\}\geqslant0.6; (C)P{ 0<X<2}⩾0.6;
( D ) P { 0 < X < 2 } ⩾ 0.6 ; (D)P\left\{0<X<\sqrt{2}\right\}\geqslant0.6; (D)P{ 0<X<2}⩾0.6; - 7.已知随机变量 X 1 , X 2 , X 3 X_1,X_2,X_3 X1,X2,X3的方差都是 σ 2 \sigma^2 σ2,任意两个随机变量之间的相关系数都是 ρ \rho ρ,则 ρ \rho ρ的最小值为______。
- 22.
- 31.产品寿命 X X X是一个随机变量,其分布函数与概率密度分别为 F ( x ) , f ( x ) F(x),f(x) F(x),f(x)。产品已工作到时刻 x x x,在时刻 x x x后的单位时间 Δ x \Delta x Δx内发生失效的概率称为产品在时刻 x x x的瞬时失效率,记为 λ ( x ) \lambda(x) λ(x)。
- 2.设 X X X是随机变量, E ( X ) > 0 E(X)>0 E(X)>0,且 E ( X 2 ) = 0.7 , D ( X ) = 0.2 E(X^2)=0.7,D(X)=0.2 E(X2)=0.7,D(X)=0.2,则以下各式成立的是( )。
- 写在最后
A A A组
24.二维正态分布一般表示为 N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) N(\mu_1,\mu_2;\sigma^2_1,\sigma^2_2;\rho) N(μ1,μ2;σ12,σ22;ρ),设 ( X , Y ) ∼ N ( 1 , 1 ; 4 , 9 ; 0.5 ) (X,Y)\sim N(1,1;4,9;0.5) (X,Y)∼N(1,1;4,9;0.5),令 Z = 2 X − Y Z=2X-Y Z=2X−Y,则 Z Z Z与 Y Y Y的相关系数为______。
解 由 ( X , Y ) ∼ N ( 1 , 1 ; 4 , 9 ; 0.5 ) (X,Y)\sim N(1,1;4,9;0.5) (X,Y)∼N(1,1;4,9;0.5)得
E ( X ) = 1 , E ( Y ) = 1 , D ( X ) = 4 , D ( Y ) = 9 , ρ X Y = 0.5 , C o v ( Z , Y ) = C o v ( 2 X − Y , Y ) = 2 C o v ( X , Y ) − C o v ( Y , Y ) = 2 ρ X Y D ( X ) D ( Y ) − D ( Y ) = 2 × 0.5 × 4 × 9 − 9 = − 3 , D ( Z ) = D ( 2 X − Y ) = 4 D ( X ) + D ( Y ) − 2 C o v ( 2 X , Y ) = 4 × 4 + 9 − 4 × 0.5 × 4 × 9 = 13 , ρ Z Y = C o v ( Z , Y ) D ( Z ) D ( Y ) = − 3 13 × 3 = − 1 13 . E(X)=1,E(Y)=1,D(X)=4,D(Y)=9,\rho_{XY}=0.5,\\ \begin{aligned} \mathrm{Cov}(Z,Y)&=\mathrm{Cov}(2X-Y,Y)=2\mathrm{Cov}(X,Y)-\mathrm{Cov}(Y,Y)\\ &=2\rho_{XY}\sqrt{D(X)D(Y)}-D(Y)\\ &=2\times0.5\times\sqrt{4\times9}-9=-3, \end{aligned}\\ \begin{aligned} D(Z)&=D(2X-Y)=4D(X)+D(Y)-2\mathrm{Cov}(2X,Y)\\ &=4\times4+9-4\times0.5\times\sqrt{4\times9}=13, \end{aligned}\\ \rho_{ZY}=\cfrac{\mathrm{Cov}(Z,Y)}{\sqrt{D(Z)}\sqrt{D(Y)}}=\cfrac{-3}{\sqrt{13}\times3}=-\cfrac{1}{\sqrt{13}}. E(X)=1,E(Y)=1,D(X)=4,D(Y)=9,ρXY=0.5,Cov(Z,Y)=Cov(2X−Y,Y)=2Cov(X,Y)−Cov(Y,Y)=2ρXYD(X)D(Y)−D(Y)=2×0.5×4×9−9=−3,D(Z)=D(2X−Y)=4D(X)+D(Y)−2Cov(2X,Y)=4×4+9−4×0.5×4×9=13,ρZY=D(Z)D(Y)Cov(Z,Y)=13×3−3=−131.
(这道题主要利用了协方差求解)
B B B组
2.设随机变量 X X X在 [ − 1 , 1 ] [-1,1] [−1,1]上服从均匀分布, Y = X 3 Y=X^3 Y=X3,则 X X X与 Y Y Y( )。
( A ) (A) (A)不相关且相互独立;
( B ) (B) (B)不相关且相互不独立;
( C ) (C) (C)相关且相互独立;
( D ) (D) (D)相关且相互不独立。
解 由题设, X ∼ U [ − 1 , 1 ] X\sim U[-1,1] X∼U[−1,1],知其概率密度为 f ( x ) = { 1 2 , − 1 ⩽ x ⩽ 1 , 0 , 其 他 , f(x)=\begin{cases}\cfrac{1}{2},&-1\leqslant x\leqslant1,\\0,&其他,\end{cases} f(x)=⎩⎨⎧21,0,−1⩽x⩽1,其他,并有 E ( X ) = 0 , E ( X Y ) = ∫ − ∞ + ∞ x 4 f ( z ) d x = ∫ − 1 1 1 2 x 4 d x = 1 5 ≠ 0 E(X)=0,E(XY)=\displaystyle\int^{+\infty}_{-\infty}x^4f(z)\mathrm{d}x=\displaystyle\int^1_{-1}\cfrac{1}{2}x^4\mathrm{d}x=\cfrac{1}{5}\ne0 E(X)=0,E(XY)=∫−∞+∞x4f(z)dx=∫−1121x4dx=51=0,有 E ( X Y ) ≠ E ( X ) E ( Y ) E(XY)\ne E(X)E(Y) E(XY)=E(X)E(Y),从而知, X X X与 Y Y Y必相关,从而相互不独立,故选 ( D ) (D) (D)。(这道题主要利用了定义求解)
3.设随机变量 X ∼ B ( 4 , 2 3 ) , Y ∼ B ( 8 , 4 5 ) X\sim B\left(4,\cfrac{2}{3}\right),Y\sim B\left(8,\cfrac{4}{5}\right) X∼B(4,32),Y∼B(8,54),且相关系数 ρ X Y = − 1 \rho_{XY}=-1 ρXY=−1,则( )。
( A ) P { Y = − 1.2 X − 9.6 } = 1 ; (A)P\{Y=-1.2X-9.6\}=1; (A)P{
Y=−1.2X−9.6}=1;
( B ) P { Y = − 1.2 X + 9.6 } = 1 ; (B)P\{Y=-1.2X+9.6\}=1; (B)P{
Y=−1.2X+9.6}=1;
( C ) P { Y = 1.2 X − 3.2 } = 1 ; (C)P\{Y=1.2X-3.2\}=1; (C)P{
Y=1.2X−3.2}=1;
( D ) P { Y = 1.2 X + 3.2 } = 1. (D)P\{Y=1.2X+3.2\}=1. (D)P{
Y=1.2X+3.2}=1.
解 根据相关性的概念,由题设,若相关系数 ρ X Y = − 1 \rho_{XY}=-1 ρXY=−1,则存在常数 a , b a,b a,b使 P { Y = a X + b } = 1 ( a < 0 ) P\{Y=aX+b\}=1(a<0) P{ Y=aX+b}=1(a<0)。又线性函数关系中, X X X与 Y Y Y应同时满足满足题中的分布,于是,由 X ∼ B ( 4 , 2 3 ) , Y ∼ B ( 8 , 4 5 ) X\sim B\left(4,\cfrac{2}{3}\right),Y\sim B\left(8,\cfrac{4}{5}\right) X∼B(4,32),Y∼B(8,54),有