张宇1000题概率论与数理统计 第六章 数字特征

目录

A A A

24.二维正态分布一般表示为 N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) N(\mu_1,\mu_2;\sigma^2_1,\sigma^2_2;\rho) N(μ1,μ2;σ12,σ22;ρ),设 ( X , Y ) ∼ N ( 1 , 1 ; 4 , 9 ; 0.5 ) (X,Y)\sim N(1,1;4,9;0.5) (X,Y)N(1,1;4,9;0.5),令 Z = 2 X − Y Z=2X-Y Z=2XY,则 Z Z Z Y Y Y的相关系数为______。

  由 ( X , Y ) ∼ N ( 1 , 1 ; 4 , 9 ; 0.5 ) (X,Y)\sim N(1,1;4,9;0.5) (X,Y)N(1,1;4,9;0.5)
E ( X ) = 1 , E ( Y ) = 1 , D ( X ) = 4 , D ( Y ) = 9 , ρ X Y = 0.5 , C o v ( Z , Y ) = C o v ( 2 X − Y , Y ) = 2 C o v ( X , Y ) − C o v ( Y , Y ) = 2 ρ X Y D ( X ) D ( Y ) − D ( Y ) = 2 × 0.5 × 4 × 9 − 9 = − 3 , D ( Z ) = D ( 2 X − Y ) = 4 D ( X ) + D ( Y ) − 2 C o v ( 2 X , Y ) = 4 × 4 + 9 − 4 × 0.5 × 4 × 9 = 13 , ρ Z Y = C o v ( Z , Y ) D ( Z ) D ( Y ) = − 3 13 × 3 = − 1 13 . E(X)=1,E(Y)=1,D(X)=4,D(Y)=9,\rho_{XY}=0.5,\\ \begin{aligned} \mathrm{Cov}(Z,Y)&=\mathrm{Cov}(2X-Y,Y)=2\mathrm{Cov}(X,Y)-\mathrm{Cov}(Y,Y)\\ &=2\rho_{XY}\sqrt{D(X)D(Y)}-D(Y)\\ &=2\times0.5\times\sqrt{4\times9}-9=-3, \end{aligned}\\ \begin{aligned} D(Z)&=D(2X-Y)=4D(X)+D(Y)-2\mathrm{Cov}(2X,Y)\\ &=4\times4+9-4\times0.5\times\sqrt{4\times9}=13, \end{aligned}\\ \rho_{ZY}=\cfrac{\mathrm{Cov}(Z,Y)}{\sqrt{D(Z)}\sqrt{D(Y)}}=\cfrac{-3}{\sqrt{13}\times3}=-\cfrac{1}{\sqrt{13}}. E(X)=1,E(Y)=1,D(X)=4,D(Y)=9,ρXY=0.5,Cov(Z,Y)=Cov(2XY,Y)=2Cov(X,Y)Cov(Y,Y)=2ρXYD(X)D(Y) D(Y)=2×0.5×4×9 9=3,D(Z)=D(2XY)=4D(X)+D(Y)2Cov(2X,Y)=4×4+94×0.5×4×9 =13,ρZY=D(Z) D(Y) Cov(Z,Y)=13 ×33=13 1.
这道题主要利用了协方差求解

B B B

2.设随机变量 X X X [ − 1 , 1 ] [-1,1] [1,1]上服从均匀分布, Y = X 3 Y=X^3 Y=X3,则 X X X Y Y Y(  )。
( A ) (A) (A)不相关且相互独立;
( B ) (B) (B)不相关且相互不独立;
( C ) (C) (C)相关且相互独立;
( D ) (D) (D)相关且相互不独立。

  由题设, X ∼ U [ − 1 , 1 ] X\sim U[-1,1] XU[1,1],知其概率密度为 f ( x ) = { 1 2 , − 1 ⩽ x ⩽ 1 , 0 , 其 他 , f(x)=\begin{cases}\cfrac{1}{2},&-1\leqslant x\leqslant1,\\0,&其他,\end{cases} f(x)=21,0,1x1,,并有 E ( X ) = 0 , E ( X Y ) = ∫ − ∞ + ∞ x 4 f ( z ) d x = ∫ − 1 1 1 2 x 4 d x = 1 5 ≠ 0 E(X)=0,E(XY)=\displaystyle\int^{+\infty}_{-\infty}x^4f(z)\mathrm{d}x=\displaystyle\int^1_{-1}\cfrac{1}{2}x^4\mathrm{d}x=\cfrac{1}{5}\ne0 E(X)=0,E(XY)=+x4f(z)dx=1121x4dx=51=0,有 E ( X Y ) ≠ E ( X ) E ( Y ) E(XY)\ne E(X)E(Y) E(XY)=E(X)E(Y),从而知, X X X Y Y Y必相关,从而相互不独立,故选 ( D ) (D) (D)。(这道题主要利用了定义求解

3.设随机变量 X ∼ B ( 4 , 2 3 ) , Y ∼ B ( 8 , 4 5 ) X\sim B\left(4,\cfrac{2}{3}\right),Y\sim B\left(8,\cfrac{4}{5}\right) XB(4,32),YB(8,54),且相关系数 ρ X Y = − 1 \rho_{XY}=-1 ρXY=1,则(  )。
( A ) P { Y = − 1.2 X − 9.6 } = 1 ; (A)P\{Y=-1.2X-9.6\}=1; (A)P{Y=1.2X9.6}=1;
( B ) P { Y = − 1.2 X + 9.6 } = 1 ; (B)P\{Y=-1.2X+9.6\}=1; (B)P{Y=1.2X+9.6}=1;
( C ) P { Y = 1.2 X − 3.2 } = 1 ; (C)P\{Y=1.2X-3.2\}=1; (C)P{Y=1.2X3.2}=1;
( D ) P { Y = 1.2 X + 3.2 } = 1. (D)P\{Y=1.2X+3.2\}=1. (D)P{Y=1.2X+3.2}=1.

  根据相关性的概念,由题设,若相关系数 ρ X Y = − 1 \rho_{XY}=-1 ρXY=1,则存在常数 a , b a,b a,b使 P { Y = a X + b } = 1 ( a < 0 ) P\{Y=aX+b\}=1(a<0) P{Y=aX+b}=1(a<0)。又线性函数关系中, X X X Y Y Y应同时满足满足题中的分布,于是,由 X ∼ B ( 4 , 2 3 ) , Y ∼ B ( 8 , 4 5 ) X\sim B\left(4,\cfrac{2}{3}\right),Y\sim B\left(8,\cfrac{4}{5}\right) XB(4,32),YB(8,54),有 E ( X ) = 8 3 , D ( X ) = 8 9 , E ( Y ) = 32 5 , D ( Y ) = 32 25 E(X)=\cfrac{8}{3},D(X)=\cfrac{8}{9},E(Y)=\cfrac{32}{5},D(Y)=\cfrac{32}{25} E(X)=38,D(X)=98,E(Y)=532,D(Y)=2532,从而有 { E ( Y ) = a E ( X ) + b , D ( Y ) = a 2 D ( X ) , \begin{cases}E(Y)=aE(X)+b,\\D(Y)=a^2D(X),\end{cases} {E(Y)=aE(X)+b,D(Y)=a2D(X), { 32 5 = 8 3 a + b , 32 25 = 8 9 a 2 \begin{cases}\cfrac{32}{5}=\cfrac{8}{3}a+b,\\\cfrac{32}{25}=\cfrac{8}{9}a^2\end{cases} 532=38a+b,2532=98a2解得 a = − 1.2 , b = 9.6 a=-1.2,b=9.6 a=1.2,b=9.6,故选 ( B ) (B) (B)。(这道题主要利用了相关系数性质求解

5.设连续型随机变量 X X X的概率密度非零区域为 [ − 1 , 1 ] [-1,1] [1,1],则下列不一定成立的是(  )。
( A ) ∣ E ( X ) ∣ ⩽ 1 ; (A)|E(X)|\leqslant1; (A)E(X)1;
( B ) E ( X 2 ) ⩽ 1 ; (B)E(X^2)\leqslant1; (B)E(X2)1;
( C ) D ( X ) ⩽ 1 ; (C)D(X)\leqslant1; (C)D(X)1;
( D ) E ( X ) = 0. (D)E(X)=0. (D)E(X)=0.

  设连续型随机变量 X X X的概率密度为 f ( x ) f(x) f(x)
  对于 ( A ) (A) (A),当 − 1 ⩽ x ⩽ 1 -1\leqslant x\leqslant1 1x1时,由期望的定义 E ( X ) = ∫ − 1 1 x f ( x ) d x E(X)=\displaystyle\int^1_{-1}xf(x)\mathrm{d}x E(X)=11xf(x)dx,有 − 1 = − ∫ − 1 1 f ( x ) d x ⩽ ∫ − 1 1 x f ( x ) d x ⩽ ∫ − 1 1 f ( x ) d x = 1 -1=-\displaystyle\int^1_{-1}f(x)\mathrm{d}x\leqslant\displaystyle\int^1_{-1}xf(x)\mathrm{d}x\leqslant\displaystyle\int^1_{-1}f(x)\mathrm{d}x=1 1=11f(x)dx11xf(x)dx11f(x)dx=1,所以 ∣ E ( X ) ∣ ⩽ 1 |E(X)|\leqslant1 E(X)1
  对于 ( B ) (B) (B) E ( X 2 ) = ∫ − 1 1 x 2 f ( x ) d x ⩽ ∫ − 1 1 f ( x ) d x = 1 E(X^2)=\displaystyle\int^1_{-1}x^2f(x)\mathrm{d}x\leqslant\displaystyle\int^1_{-1}f(x)\mathrm{d}x=1 E(X2)=11x2f(x)dx11f(x)dx=1
  对于 ( C ) (C) (C) D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 ⩽ E ( X 2 ) ⩽ 1 D(X)=E(X^2)-[E(X)]^2\leqslant E(X^2)\leqslant1 D(X)=E(X2)[E(X)]2E(X2)1
  对于 ( D ) (D) (D),不一定成立,因为 f ( x ) f(x) f(x)不一定关于 y y y轴对称。如 f ( x ) = { 1 3 , − 1 ⩽ x < 0 , 2 3 , 0 ⩽ x ⩽ 1 , f(x)=\begin{cases}\cfrac{1}{3},&-1\leqslant x<0,\\\cfrac{2}{3},&0\leqslant x\leqslant1,\end{cases} f(x)=31,32,1x<0,0x1, E ( X ) = ∫ − 1 1 x f ( x ) d x = ∫ − 1 0 x ⋅ 1 3 d x + ∫ 0 1 x ⋅ 2 3 d x = − 1 6 + 1 3 = 1 6 E(X)=\displaystyle\int^1_{-1}xf(x)\mathrm{d}x=\displaystyle\int^0_{-1}x\cdot\cfrac{1}{3}\mathrm{d}x+\displaystyle\int^1_0x\cdot\cfrac{2}{3}\mathrm{d}x=-\cfrac{1}{6}+\cfrac{1}{3}=\cfrac{1}{6} E(X)=11xf(x)dx=10x31dx+01x32dx=61+31=61。选 ( D ) (D) (D)。(这道题主要利用了放缩法求解

9.设 X X X为连续型随机变量,方差存在,则对于任意常数 C C C ϵ > 0 \epsilon>0 ϵ>0,必有(  )。
( A ) P { ∣ X − C ∣ ⩾ ϵ } = E ( ∣ X − C ∣ ) ϵ ; (A)P\{|X-C|\geqslant\epsilon\}=\cfrac{E(|X-C|)}{\epsilon}; (A)P{XCϵ}=ϵE(XC);
( B ) P { ∣ X − C ∣ ⩾ ϵ } ⩾ E ( ∣ X − C ∣ ) ϵ ; (B)P\{|X-C|\geqslant\epsilon\}\geqslant\cfrac{E(|X-C|)}{\epsilon}; (B)P{XCϵ}ϵE(XC);
( C ) P { ∣ X − C ∣ ⩾ ϵ } ⩽ E ( ∣ X − C ∣ ) ϵ ; (C)P\{|X-C|\geqslant\epsilon\}\leqslant\cfrac{E(|X-C|)}{\epsilon}; (C)P{XCϵ}ϵE(XC);
( D ) P { ∣ X − C ∣ ⩾ ϵ } ⩽ D ( X ) ϵ . (D)P\{|X-C|\geqslant\epsilon\}\leqslant\cfrac{D(X)}{\epsilon}. (D)P{XCϵ}ϵD(X).

  因为
P { ∣ X − C ∣ ⩾ ϵ } = ∫ ∣ X − C ∣ ⩾ ϵ f ( x ) d x ⩽ ∫ ∣ X − C ∣ ⩾ ϵ ∣ X − C ∣ ϵ f ( x ) d x ⩽ ∫ − ∞ + ∞ ∣ X − C ∣ ϵ f ( x ) d x = 1 ϵ E ( ∣ X − C ∣ ) , \begin{aligned} P\{|X-C|\geqslant\epsilon\}&=\displaystyle\int_{|X-C|\geqslant\epsilon}f(x)\mathrm{d}x\leqslant\displaystyle\int_{|X-C|\geqslant\epsilon}\cfrac{|X-C|}{\epsilon}f(x)\mathrm{d}x\\ &\leqslant\displaystyle\int^{+\infty}_{-\infty}\cfrac{|X-C|}{\epsilon}f(x)\mathrm{d}x=\cfrac{1}{\epsilon}E(|X-C|), \end{aligned} P{XCϵ}=XCϵf(x)dxXCϵϵXCf(x)dx+ϵXCf(x)dx=ϵ1E(XC),
  故选 ( C ) (C) (C)。(这道题主要利用了放缩法求解

16.独立重复试验中事件 A A A发生的概率为 1 3 \cfrac{1}{3} 31,若随机变量 X X X表示事件 A A A第一次发生时前面已发生的试验次数,则 E ( X ) = E(X)= E(X)=______。

   X X X的所有可能取值为 0 , 1 , 2 , ⋯ 0,1,2,\cdots 0,1,2,,其概率分布为 P { X = k } = 1 3 ⋅ ( 2 3 ) k , k = 0 , 1 , 2 , ⋯ P\{X=k\}=\cfrac{1}{3}\cdot\left(\cfrac{2}{3}\right)^k,k=0,1,2,\cdots P{X=k}=31(32)k,k=0,1,2,,由期望的定义有
E ( X ) = ∑ k = 0 ∞ k ⋅ 1 3 ⋅ ( 2 3 ) k = 1 3 × 2 3 ∑ k = 1 ∞ k ( 2 3 ) k − 1 = 1 3 × 2 3 ( ∑ k = 1 ∞ q k ) ′ ∣ q = 2 3 = 1 3 × 2 3 ( q 1 − q ) ′ ∣ q = 2 3 = 1 3 × 2 3 × 1 ( 1 − q ) 2 ∣ q = 2 3 = 2. \begin{aligned} E(X)&=\displaystyle\sum^\infty_{k=0}k\cdot\cfrac{1}{3}\cdot\left(\cfrac{2}{3}\right)^k=\cfrac{1}{3}\times\cfrac{2}{3}\displaystyle\sum^\infty_{k=1}k\left(\cfrac{2}{3}\right)^{k-1}=\cfrac{1}{3}\times\cfrac{2}{3}\left(\displaystyle\sum^\infty_{k=1}q^k\right)'\biggm\vert_{q=\frac{2}{3}}\\ &=\cfrac{1}{3}\times\cfrac{2}{3}\left(\cfrac{q}{1-q}\right)'\biggm\vert_{q=\frac{2}{3}}=\cfrac{1}{3}\times\cfrac{2}{3}\times\cfrac{1}{(1-q)^2}\biggm\vert_{q=\frac{2}{3}}=2. \end{aligned} E(X)=k=0k31(32)k=31×32k=1k(32)k1=31×32(k=1qk)q=32=31×32(1qq)q=32=31×32×(1q)21q=32=2.
这道题主要利用了幂级数求解

C C C

2.设 X X X是随机变量, E ( X ) > 0 E(X)>0 E(X)>0,且 E ( X 2 ) = 0.7 , D ( X ) = 0.2 E(X^2)=0.7,D(X)=0.2 E(X2)=0.7,D(X)=0.2,则以下各式成立的是(  )。
( A ) P { − 1 2 < X < 3 2 } ⩾ 0.2 ; (A)P\left\{-\cfrac{1}{2}<X<\cfrac{3}{2}\right\}\geqslant0.2; (A)P{21<X<23}0.2;
( B ) P { X ⩾ 2 } ⩾ 0.6 ; (B)P\left\{X\geqslant\sqrt{2}\right\}\geqslant0.6; (B)P{X2 }0.6;
( C ) P { 0 < X < 2 } ⩾ 0.6 ; (C)P\left\{0<X<\sqrt{2}\right\}\geqslant0.6; (C)P{0<X<2 }0.6;
( D ) P { 0 < X < 2 } ⩾ 0.6 ; (D)P\left\{0<X<\sqrt{2}\right\}\geqslant0.6; (D)P{0<X<2 }0.6;

   E ( X ) = E ( X 2 ) − D ( X ) = 2 2 E(X)=\sqrt{E(X^2)-D(X)}=\cfrac{\sqrt{2}}{2} E(X)=E(X2)D(X) =22 ,于是,由切比雪夫不等式知 P { 0 < X < 2 } = P { − 2 2 < X − 2 2 < 2 2 } = P { ∣ X − E ( X ) ∣ < 2 2 } ⩾ 1 − D ( X ) ( 2 2 ) 2 = 0.6 P\{0<X<\sqrt{2}\}=P\left\{-\cfrac{\sqrt{2}}{2}<X-\cfrac{\sqrt{2}}{2}<\cfrac{\sqrt{2}}{2}\right\}=P\left\{|X-E(X)|<\cfrac{\sqrt{2}}{2}\right\}\geqslant1-\cfrac{D(X)}{\left(\frac{\sqrt{2}}{2}\right)^2}=0.6 P{0<X<2 }=P{22 <X22 <22 }=P{XE(X)<22 }1(22 )2D(X)=0.6,故选 ( C ) (C) (C)。(这道题主要利用了切比雪夫不等式求解

7.已知随机变量 X 1 , X 2 , X 3 X_1,X_2,X_3 X1,X2,X3的方差都是 σ 2 \sigma^2 σ2,任意两个随机变量之间的相关系数都是 ρ \rho ρ,则 ρ \rho ρ的最小值为______。


D ( X 1 + X 2 + X 3 ) = D ( X 1 ) + D ( X 2 ) + D ( X 3 ) + 2 C o v ( X 1 , X 2 ) + 2 C o v ( X 1 , X 3 ) + 2 C o v ( X 2 , X 3 ) = 3 σ 2 + 6 ρ σ 2 = 3 σ 2 ( 1 + 2 ρ ) ⩾ 0 , \begin{aligned} D(X_1+X_2+X_3)=&D(X_1)+D(X_2)+D(X_3)+2\mathrm{Cov}(X_1,X_2)+\\ &2\mathrm{Cov}(X_1,X_3)+2\mathrm{Cov}(X_2,X_3)\\ =&3\sigma^2+6\rho\sigma^2=3\sigma^2(1+2\rho)\geqslant0, \end{aligned} D(X1+X2+X3)==D(X1)+D(X2)+D(X3)+2Cov(X1,X2)+2Cov(X1,X3)+2Cov(X2,X3)3σ2+6ρσ2=3σ2(1+2ρ)0,
  所以 ρ ⩾ − 1 2 \rho\geqslant-\cfrac{1}{2} ρ21。(这道题主要利用了协方差求解

22.

(1)叙述切比雪夫不等式,并在连续性情形下给出证明;

  切比雪夫不等式:设随机变量 X X X的数学期望 E ( X ) E(X) E(X)和方差 D ( X ) D(X) D(X)存在,则对任意给定的 ϵ > 0 \epsilon>0 ϵ>0,总有 P { ∣ X − E ( X ) ∣ ⩾ ϵ } ⩽ D ( X ) ϵ 2 P\{|X-E(X)|\geqslant\epsilon\}\leqslant\cfrac{D(X)}{\epsilon^2} P{XE(X)ϵ}ϵ2D(X)
  证明:若 X X X为连续型随机变量,其概率密度为 f ( x ) f(x) f(x),则
P { ∣ X − E ( X ) ∣ ⩾ ϵ } = ∫ ∣ X − E ( X ) ∣ ⩾ ϵ f ( x ) d x ⩽ ∫ ∣ X − E ( X ) ∣ ⩾ ϵ ( ∣ x − E ( X ) ∣ ϵ ) 2 f ( x ) d x = 1 ϵ 2 ∫ ∣ X − E ( X ) ∣ ⩾ ϵ [ x − E ( X ) ] 2 f ( x ) d x ⩽ 1 ϵ 2 ∫ − ∞ + ∞ [ x − E ( X ) ] 2 f ( x ) d x = D ( X ) ϵ 2 . \begin{aligned} &P\{|X-E(X)|\geqslant\epsilon\}=\displaystyle\int_{|X-E(X)|\geqslant\epsilon}f(x)\mathrm{d}x\\ \leqslant&\displaystyle\int_{|X-E(X)|\geqslant\epsilon}\left(\cfrac{|x-E(X)|}{\epsilon}\right)^2f(x)\mathrm{d}x\\ =&\cfrac{1}{\epsilon^2}\displaystyle\int_{|X-E(X)|\geqslant\epsilon}[x-E(X)]^2f(x)\mathrm{d}x\\ \leqslant&\cfrac{1}{\epsilon^2}\displaystyle\int^{+\infty}_{-\infty}[x-E(X)]^2f(x)\mathrm{d}x=\cfrac{D(X)}{\epsilon^2}. \end{aligned} =P{XE(X)ϵ}=XE(X)ϵf(x)dxXE(X)ϵ(ϵxE(X))2f(x)dxϵ21XE(X)ϵ[xE(X)]2f(x)dxϵ21+[xE(X)]2f(x)dx=ϵ2D(X).
这道题主要利用了放缩法求解

31.产品寿命 X X X是一个随机变量,其分布函数与概率密度分别为 F ( x ) , f ( x ) F(x),f(x) F(x),f(x)。产品已工作到时刻 x x x,在时刻 x x x后的单位时间 Δ x \Delta x Δx内发生失效的概率称为产品在时刻 x x x的瞬时失效率,记为 λ ( x ) \lambda(x) λ(x)

(1)证明 λ ( x ) = f ( x ) 1 − F ( x ) \lambda(x)=\cfrac{f(x)}{1-F(x)} λ(x)=1F(x)f(x)


P ( λ ) = lim ⁡ Δ x → 0 + P { x < X ⩽ x + Δ x ∣ X > x } Δ x = lim ⁡ Δ x → 0 + P { x < X ⩽ x + Δ x , X > x } Δ x ⋅ P { X > x } = lim ⁡ Δ x → 0 + P { x < X ⩽ x + Δ x } − P { X ⩽ x } Δ x ⋅ [ 1 − F ( x ) ] = lim ⁡ Δ x → 0 + F ( x + Δ x ) − F ( x ) Δ x ⋅ 1 1 − F ( x ) = f ( x ) 1 − F ( x ) . \begin{aligned} P(\lambda)&=\lim\limits_{\Delta x\to0^+}\cfrac{P\{x<X\leqslant x+\Delta x|X>x\}}{\Delta x}\\ &=\lim\limits_{\Delta x\to0^+}\cfrac{P\{x<X\leqslant x+\Delta x,X>x\}}{\Delta x\cdot P\{X>x\}}\\ &=\lim\limits_{\Delta x\to0^+}\cfrac{P\{x<X\leqslant x+\Delta x\}-P\{X\leqslant x\}}{\Delta x\cdot[1-F(x)]}\\ &=\lim\limits_{\Delta x\to0^+}\cfrac{F(x+\Delta x)-F(x)}{\Delta x}\cdot\cfrac{1}{1-F(x)}\\ &=\cfrac{f(x)}{1-F(x)}. \end{aligned} P(λ)=Δx0+limΔxP{x<Xx+ΔxX>x}=Δx0+limΔxP{X>x}P{x<Xx+Δx,X>x}=Δx0+limΔx[1F(x)]P{x<Xx+Δx}P{Xx}=Δx0+limΔxF(x+Δx)F(x)1F(x)1=1F(x)f(x).

(2)设某产品寿命的瞬时失效率函数为 λ ( x ) = α \lambda(x)=\alpha λ(x)=α,其中参数 α > 0 \alpha>0 α>0,求产品寿命 X X X的数学期望。

  将 λ ( x ) = α \lambda(x)=\alpha λ(x)=α代入得 α = F ′ ( x ) 1 − F ( x ) = { − ln ⁡ [ 1 − F ( x ) ] } ′ \alpha=\cfrac{F'(x)}{1-F(x)}=\{-\ln[1-F(x)]\}' α=1F(x)F(x)={ln[1F(x)]}
  上式两边积分得 ∫ α d x = ∫ { − ln ⁡ [ 1 − F ( x ) ] } ′ d x , α x + C = − ln ⁡ [ 1 − F ( x ) ] \displaystyle\int\alpha\mathrm{d}x=\displaystyle\int\{-\ln[1-F(x)]\}'\mathrm{d}x,\alpha x+C=-\ln[1-F(x)] αdx={ln[1F(x)]}dx,αx+C=ln[1F(x)],即 1 − F ( x ) = e − ( α x + C ) 1-F(x)=e^{-(\alpha x+C)} 1F(x)=e(αx+C),又 F ( 0 ) = P { X ⩽ 0 } = 0 F(0)=P\{X\leqslant0\}=0 F(0)=P{X0}=0,则 C = 0 C=0 C=0,故 F ( x ) = 1 − e − α x F(x)=1-e^{-\alpha x} F(x)=1eαx,即产品寿命服从指数分布,所以 E ( X ) = 1 α E(X)=\cfrac{1}{\alpha} E(X)=α1。(这道题主要利用了微分方程求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
  欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值