每天五分钟机器学习:将PCA算法降维的数据进行升维恢复

本文探讨PCA算法如何将数据从高维降维到低维,并讲解如何利用PCA实现低维数据到原始高维数据的近似恢复,确保重构后的数据与原始数据接近。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文重点

前面我们已经学习了PCA算法,他能完成数据的压缩,那么是否可以将压缩过的数据恢复到近似原始高维度的数据吗?

高维降维到低维

 

低维恢复到高维

 

此时Xappox≈x,Xappox就相当于回到了最初的维度了

根据PCA的意图,投影的平方误差不能太大,也就是说Xapprox将会与最开始x很接近,我们称这一过程为原始数据的重构,可以在压缩过的数据重构出原始高维数据x。

### 的概念 在机器学习领域,是指通过特定的技术减少数据集中特征的数量,从而度空间的复杂度。这一过程通常用于去除冗余信息并提高计算效率[^1]。而则是指增加原始数据中的特征数量或将其映射到更高度的空间中,以便更好地捕捉潜在模式。 --- ### 常见的方法及其应用 #### 主成分分析 (PCA) 主成分分析是一种线性技术,它通过寻找新的正交坐标轴来表示数据的最大方差方向。这种方法能够有效保留数据的主要结构特性,同时显著减少噪声的影响[^2]。 适用场景:图像压缩、基因数据分析等领域。 #### t-SNE t-SNE 是一种非线性的算法,特别适合于高数据可视化。其核心思想是在低空间中尽可能保持样本之间的相似关系。尽管该方法不适用于大规模数据集,但它能很好地揭示复杂的簇状分布[^3]。 ```python from sklearn.manifold import TSNE X_embedded = TSNE(n_components=2).fit_transform(X_high_dimensional) ``` #### LDA(线性判别分析) LDA 的目标是找到最大化类间差异最小化类内差异的方向来进行投影。因此,它是监督学习下的经典工具之一,在分类任务中有广泛应用价值。 ```python from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA lda_model = LDA(n_components=2) X_lda = lda_model.fit_transform(X, y) ``` --- ### 的应用及实现方式 虽然实际工程更常关注如何简化问题而非扩展度,但在某些情况下也需要引入额外变量或将原输入转换成更加丰富的表达形式: #### 多项式特征展开 多项式特征生成器允许我们将简单的一次函数转变为二次甚至更高阶的形式,这有助于构建更为灵活的回归模型。 ```python from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree=2) X_poly = poly.fit_transform(X_original) ``` #### 核技巧(Kernel Trick) 核方法本质上就是把原本难以分离的数据点投射至无限高的希尔伯特空间后再做进一步处理。SVM 中常用的 RBF Kernel 就是一个典型例子。 ```python from sklearn.svm import SVC svc_rbf = SVC(kernel='rbf') svc_rbf.fit(X_train, y_train) ``` --- ### 总结对比表 | 方法 | 类型 | 特点 | |------------|----------|----------------------------------------------------------------------------------------| | PCA | 线性 | 寻找最大方差方向 | | t-SNE | 非线性| 更注重局部邻近关系 | | LDA | 监督 | 结合标签优化 | | 多项式变换 | 显式 | 手动构造新属性 | | 核函数 | 隐式 | 自动完成映射 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值