AI人工智能技术的到来,给产品经理的未来发展带来了挑战和机遇,不少人可能会选择抓住这个风口,在浪潮中转型升级。这篇文章里,作者就对产品经理如何在人工智能时代“顺势而为”这件事发表了一定看法,一起来看。
随着人工智能(AI)技术的迅速发展,各行各业都在积极探索如何应用AI技术来提高效率、降低成本、提升用户体验。然而,对于处在风口浪尖的互联网产品经理,要么被迫裁掉,寻找下一个“夕阳”互联网企业瑟瑟发抖;要么乘风破浪,转型升级。
这既是一种幸运,也是一种不幸。至少嗅到这个变化趋势,对于有升维思想的产品经理来说,是一种机遇。
一、市场需求:推动产品经理转型
近年来,AI技术在各行各业都取得了突破性的进展,如早些年的自动驾驶汽车、智能语音助手、人脸识别等。到这两年崛起的大模型,通用人工智能,这些应用的不断涌现,给AI产品经理带来了巨大的市场需求。越来越多的企业意识到AI技术的价值,并开始寻求专业的AI产品经理来推动他们的数字化转型。
从政务行业来说,这两年我们企业一直推动从以前 “千人一面” 的政务服务网,逐步转向 “千人千面,千企千面” 的个性化、特色化的政务服务网。
因此,我们可以预见,在未来几年内,AI产品经理的需求量将会持续增加。
二、技能要求:复合且专业性强
对于新型的AI产品经理,至少需要三大能力:
- 原有互联网产品技能;
- 了解AI算法技术(机器学习、深度学习);
- 了解行业与算法技术的结合。
第一,原有互联网产品技能。
这包括对业务需求的理解,与客户和业务人员的沟通能力,以及将业务需求转化为产品需求的能力。同时,还需要掌握项目管理、团队协作、市场分析等技能。这些技能是互联网产品经理的核心竞争力,也是 AI 产品经理必备的基础。
第二,了解AI算法技术(机器学习、深度学习)。
AI 产品经理需要对算法技术有一定的了解,特别是机器学习和深度学习。机器学习是人工智能的重要分支,通过让计算机学习数据,从而实现人工智能。深度学习则是机器学习的一个子领域,通过模拟人脑神经元结构,实现对复杂数据的深度分析和学习。
AI 产品经理需要理解这些技术的原理,以便更好地将这些技术应用于产品设计中。
第三,了解行业与算法技术的结合。
AI 产品经理还需要了解不同行业与 AI 算法技术的结合方式。例如,在医疗行业,AI 可以通过深度学习技术,分析医疗影像数据,辅助医生进行诊断。在金融行业,AI 可以通过机器学习技术,分析用户行为数据,提供个性化的金融服务。
AI 产品经理需要了解这些应用场景,以便更好地将 AI 技术应用于实际产品中。同时,还需要持续关注行业动态,以便及时把握新的技术发展和应用机会。
三、发展趋势:多元化与精细化并存
第一,发展多元化。
随着AI技术的发展,AI产品经理的应用场景也将越来越广泛。未来,AI产品经理不仅将在互联网、金融、医疗等传统行业发挥作用,还将在新兴领域如智慧城市、自动驾驶、虚拟现实等方面大有可为。此外,随着5G、物联网等技术的普及,AI产品经理将有更多机会将AI技术与其他技术相结合,创造出更多具有创新性的产品。
第二,发展精细化。
随着市场竞争的加剧,企业对AI产品经理的要求也将越来越高。
未来,AI产品经理不仅需要具备扎实的技能和丰富的经验,还需要能够在特定领域进行深入挖掘,成为某一领域的专家。例如,金融行业的AI产品经理需要了解金融行业的业务特点和市场需求,能够设计出针对金融行业的专用AI产品。
此外,随着隐私保护意识的提高,如何在保证数据安全的前提下发挥AI技术的优势也将成为AI产品经理需要关注的重要问题。
四、最后的话
有人说,人工智能技术的到来砸了自己的饭碗,让自己无路可走;也有人说,人工智能技术的到来让他感受到前所未有的效率提升,让自己充满无限可能。
如何系统的去学习AI大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~