本文的目标是演示如何在本地环境中搭建并体验AI模型,包括安装Ollama、Docker、Open WebUI,下载LLM开源大模型,并通过命令行或Web界面进行交互验证结果。
一、下载并安装Ollama
1. 什么是 Ollama?
Ollama 是一个开源的大型语言模型(LLM)服务工具,旨在帮助用户在本地环境中部署和运行大规模预训练语言模型。它通过简化模型的下载、安装和管理流程,使得用户能够轻松地在本地运行和管理各种开源大型语言模型。
2.下载地址
https://ollama.com/download 根据操作系统型号选择对应的版本。
二、下载并安装docker
1. 什么是 docker?
Docker 是一个开源的容器化平台,用于开发、部署和运行应用程序。它通过使用容器技术,允许开发者将应用程序及其依赖项打包到一个独立的、可移植的容器中,从而确保应用程序在不同的环境中能够一致地运行。
2. 下载地址
https://www.docker.com/ 根据操作系统型号选择对应的版本。
三、下载 Open-webui
1. 什么是 Open-webui
Open WebUI 是一个开源的、功能丰富且用户友好的自托管 Web 用户界面,专为离线运行而设计,支持多种大型语言模型(LLM)运行器,包括 Ollama 和兼容 OpenAI 的 API。这个项目旨在为用户提供一个灵活、强大且易于使用的界面来与各种 AI 模型进行交互。
2. 下载地址
https://github.com/open-webui/open-webui
找到如下红框内容,复制 docker 命令(注意:docker 必须提前安装好)
此操作会耗费较长时间,下载完成后,前往 docker desktop 控制台,可查看到已部署好的 open-webui 的容器
点击 3000:8080 的链接,即可在本地打开 open webui 的交互窗口页
根据指引,创建管理员账号,登录成功后
四、下载安装LLM 大模型
前往 Ollama 的模型商城下载 llm 开源大语言模型,下载地址:https://ollama.com/search
在 Ollama 的模型版块搜索已支持的开源大模型,比如:qwen
根据电脑的配置选择大模型,如果无 gpu卡,本机不建议选择大于超过超过 7 B的大模型,这里的B是billion的意思, 7 B的大模型代表是 70 亿 参数的大模型。
这里选择 3b 的大模型
下载方案 1:终端下载,输入:ollama run qwen2.5:3b
如下所示即代表完成下载
下载方案 2:在 open-webui 下载
可在页面可直接通过搜索具体的名称完成下载,此方案更简便。
五、体验大模型
方案 1:通过命令行终端
方案 2:在 open-webui 体验
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓