检索增强生成 (RAG) 作为一种结合了信息检索和文本生成的 NLP 技术,近年来备受关注。它能够从大量文本数据中检索相关信息,并基于检索到的信息生成更准确、更流畅的文本。然而,现有的 RAG 模型往往较为复杂,对计算资源要求较高,不利于快速部署和应用。
针对这一问题,本文将介绍一种名为 LightRAG 的轻量级 RAG 模型。LightRAG 具有结构简单、速度快、易于部署等优点,能够帮助开发者快速构建自己的知识库问答系统。
LightRAG 简介
LightRAG 是一种基于论文 “LightRAG: Simple and Fast Retrieval-Augmented Generation” 的开源 RAG 模型。它采用了一种简单高效的架构,主要由以下三个模块组成:
-
**检索器 (Retriever)**:负责从知识库中检索与用户查询相关的文档或段落。
-
**编码器 (Encoder)**:将检索到的文本和用户查询编码成向量表示。
-
**解码器 (Decoder)**:根据编码后的向量表示生成最终的答案。
LightRAG 使用 FAISS 库进行高效的向量检索,并使用 Transformer 模型作为编码器和解码器。其简单高效的架构使其在保证性能的同时,大大降低了计算资源的需求。
LightRAG 的优势
相比于其他 RAG 模型,LightRAG 具有以下优势:
-
简单易用: LightRAG 的代码结构清晰简洁,易于理解和使用。
-
快速高效: LightRAG 使用 FAISS 进行向量检索,速度非常快。
-
轻量级: LightRAG 的模型参数量较少,对计算资源的要求较低。
-
开源免费: LightRAG 基于 MIT 许可证开源,可以免费使用和修改。
LightRAG 的应用场景
LightRAG 可以应用于各种需要基于知识库进行问答的场景,例如:
-
客服机器人: 构建智能客服系统,自动回答用户常见问题。
-
知识问答: 搭建企业内部知识库,方便员工快速查找信息。
-
文档摘要: 对长文档进行摘要,提取关键信息。
-
代码生成: 根据用户需求生成代码。
LightRAG 使用示例
以下是一个使用 LightRAG 构建简单知识库问答系统的示例:
from lightrag import LightRAG # 加载预训练的 LightRAG 模型 model = LightRAG.from_pretrained("hkuds/lightrag-base-en") # 构建知识库 knowledge_base = [ "LightRAG is a simple and fast retrieval-augmented generation model.", "It is based on the paper 'LightRAG: Simple and Fast Retrieval-Augmented Generation'.", "The code is available on GitHub under the MIT license.", ] # 创建 LightRAG 实例 rag = LightRAG(model, knowledge_base) # 提问 question = "What is LightRAG?" # 获取答案 answer = rag.generate(question) # 打印答案 print(answer)
输出:
LightRAG is a simple and fast retrieval-augmented generation model.
总结
LightRAG 是一种轻量级、高效的 RAG 模型,能够帮助开发者快速构建自己的知识库问答系统。其简单易用、快速高效、开源免费等优点使其成为构建 RAG 应用的理想选择。
未来展望
随着 RAG 技术的不断发展,相信 LightRAG 会不断完善和优化,为更多开发者提供便捷高效的 RAG 解决方案。未来,LightRAG 将会着重于以下几个方面的改进:
-
支持多语言: 目前 LightRAG 主要支持英文,未来将会支持更多语言。
-
提升模型性能: 不断优化模型结构和训练方法,进一步提升模型性能。
-
丰富应用场景: 探索 LightRAG 在更多场景下的应用,例如代码生成、机器翻译等。
相信在不久的将来,LightRAG 将会在 RAG 领域发挥更加重要的作用。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓