掌握LLM的关键技能,这本指南不可错过(附PDF)

大语言模型(LLM)对世界的影响深远且广泛。通过让机器更好地理解和生成类似人类的语言,LLM 为 AI 领域开辟了新的可能性,并推动了多个行业的变革。从 ChatGPT 到 GitHub Copilot,这些技术已从实验室走向生活,成为我们工作、学习和创造的重要工具。

《Hands-On Large Language Models》(中文版预计 3 月底上市) ,由 Jay Alammar 和 Maarten Grootendorst 倾力打造,为你深入解读大模型的技术核心,让看似复杂的技术变得通俗易懂、触手可及!

图片

通过直观的讲解、实践案例和丰富的图示,本书致力于为探索 LLM 世界的读者提供坚实的基础。无论你是 LLM 领域的资深开发者,还是刚开始探索 AI 的新手,这本书都能带你从理论到实践,手把手教你掌握前沿的大模型技术,开始构建属于自己的 LLM 应用。

为什么一定要读这本书?

1. 语言模型核心技术的全面解读

从标记化、嵌入到 Transformer 架构和注意力机制,本书通过精美的图表、详尽的讲解和代码示例,帮助你轻松掌握 LLM 的技术原理。不再停留在表面,而是深度剖析技术的内核,让你从入门走向精通!

图片

GPT-1 的架构

2. 嵌入模型的超强能力

嵌入模型是驱动 LLM 的关键技术,除了生成任务,它们在文本语义捕捉上同样无可匹敌:

  • 文本分类: 从情感分析到实体提取,这本书会教你如何高效完成复杂的分类任务,甚至不需要标注数据!

  • 文本聚类: 发现数据背后的隐藏模式!第五章详细讲解了 HDBSCAN 和 BERTopic 等技术,帮你从海量数据中快速提取价值。

3. 提示工程(Prompt Engineering)的实用技巧

用 ChatGPT 写代码、回答问题、完成任务是不是总觉得差点意思?提示工程是关键!

第六章深入讲解如何通过优化提示,让 LLM 输出更准确、更智能。特别是“思维树”方法,简单却高效,彻底改变你的使用体验!

4. 检索增强生成(RAG)的落地应用

如何让 AI 不仅能生成内容,还能回答与你数据相关的专属问题?RAG 技术是答案!

第八章详细解析如何利用 RAG 创建“与我的数据对话”的智能助手,降低幻觉问题,提升结果可信度。无论是企业应用还是个人探索,这都是你不容错过的技术亮点。

图片

基本的 RAG 管道

5. LangChain:高效开发必备框架

如果你想快速实现 LLM 应用,LangChain 是你的最佳选择!

第七章对 LangChain 的核心功能进行了深入介绍,教你如何用最少的代码实现强大的功能,让开发变得高效又轻松。

6. 搜索引擎中的 LLM 应用

Google 和 Bing 是如何用 LLM 改变搜索排序的?

第八章会为你解答这个问题。你将学到如何利用语义搜索优化排序结果,这对于搜索技术的从业者来说,绝对是干货满满!

图片

LLM 重新排序器作为搜索管道的一部分运行,目的是根据相关性对一些入围搜索结果进行重新排序。

7. 图像与语言的完美结合:多模态 LLM

将语言和图像结合,能让 AI 的能力更上一层楼。

本书第九章详解如何构建多模态应用,教你如何从图像中提取语义信息,打造更强大的应用场景。

图片

多模态嵌入模型可以在同一向量空间中为多种模态创建嵌入。

8. 命名实体识别(NER)

处理敏感数据?识别人名、地名等关键信息?NER 是你的利器!本书不仅讲解了 NER 的原理,还展示了如何高效应用于数据匿名化和去标识化任务。

图片

NER 可以检测命名实体,例如人名或地名

无论是开发者、数据科学家,还是企业决策者,这一章节都是你的必读内容!

9. 微调与适配:大模型专属定制

微调技术是大模型落地的重要环节,而本书对此进行了深入解析:

  • TSDAE 无监督微调:轻松解决数据稀缺问题,快速提升模型表现。

  • 选择性微调:计算资源有限?没问题!书中讲解如何用最优策略微调模型,做到事半功倍。

  • 适配器技术:通过简单的模块化操作,实现下游任务的定制化需求,同时显著提升训练效率。

图片

训练更多的区块可以提高表现,但很快就会稳定下来

图片

专门用于特定任务的适配器可以交换到相同的架构中

这本书适合谁?

✅  LLM 专业人士:快速提升开发与应用能力,掌握最新技术动向。
✅  AI 爱好者:有机器学习基础,想要深入了解 LLM 的潜力与应用场景,激发技术灵感。
⚠️  机器学习初学者:如果你对基本机器学习概念不熟悉,建议先学习相关入门知识,同时你需要具备一定的 Python 编程经验。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值