马氏距离(Mahalanobis Distance)是度量学习中一种常用的距离指标,同欧氏距离、曼哈顿距离、汉明距离等一样被用作评定数据之间的相似度指标。但却可以应对高维线性分布的数据中各维度间非独立同分布的问题。
什么是马氏距离
马氏距离(Mahalanobis Distance)是一种距离的度量,可以看作是欧氏距离的一种修正,修正了欧式距离中各个维度尺度不一致且相关的问题。
单个数据点的马氏距离
数据点x, y之间的马氏距离
其中Σ是多维随机变量的协方差矩阵,μ为样本均值,如果协方差矩阵是单位向量,也就是各维度独立同分布,马氏距离就变成了欧氏距离。
马氏距离实际意义
那么马氏距离就能能干什么?它比欧氏距离好在哪里?举几个栗子
欧式距离近就一定相似?
先举个比较常用的例子,身高和体重,这两个变量拥有不