马氏距离(Mahalanobis Distance)

马氏距离是解决高维线性分布数据中各维度非独立同分布问题的距离度量。它修正了欧式距离的尺度不一致和相关性问题,通过主成分分析实现变量旋转和标准化。当数据已归一化但维度间不独立时,马氏距离能提供更准确的相似度判断,尤其在处理离群点和非独立分布时优于欧氏距离。然而,它要求协方差矩阵满秩,且仅适用于线性空间,无法处理非线性流形问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

马氏距离(Mahalanobis Distance)是度量学习中一种常用的距离指标,同欧氏距离、曼哈顿距离、汉明距离等一样被用作评定数据之间的相似度指标。但却可以应对高维线性分布的数据中各维度间非独立同分布的问题。
什么是马氏距离
马氏距离(Mahalanobis Distance)是一种距离的度量,可以看作是欧氏距离的一种修正,修正了欧式距离中各个维度尺度不一致且相关的问题。

单个数据点的马氏距离
在这里插入图片描述
数据点x, y之间的马氏距离
在这里插入图片描述
其中Σ是多维随机变量的协方差矩阵,μ为样本均值,如果协方差矩阵是单位向量,也就是各维度独立同分布,马氏距离就变成了欧氏距离。

马氏距离实际意义
那么马氏距离就能能干什么?它比欧氏距离好在哪里?举几个栗子

欧式距离近就一定相似?
先举个比较常用的例子,身高和体重,这两个变量拥有不

### Mahalanobis 距离的概念 Mahalanobis 距离是一种用于衡量两个点之间差异的方法,它考虑了数据分布中的协方差结构。与欧几里得距离不同的是,Mahalanobis 距离能够捕捉到变量之间的相关性以及它们的变化程度[^3]。 具体来说,对于一个多维随机向量 \( \mathbf{x} = (x_1, x_2, ..., x_p)^T \),其均值为 \( \boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_p)^T \),协方差矩阵为 \( \Sigma \),那么任意一点 \( \mathbf{y} \) 到均值的距离可以定义为: \[ D_M(\mathbf{y}) = \sqrt{(\mathbf{y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{y} - \boldsymbol{\mu})} \] 其中,\( D_M(\mathbf{y}) \) 表示点 \( \mathbf{y} \)Mahalanobis 距离。这种度量方式特别适用于检测异常值(outliers),因为它不仅依赖于单个维度上的偏差,还综合考虑了多维空间内的相互关系[^4]。 ### 实现方法 以下是基于 Python 和 NumPy 库的一个简单实现例子: ```python import numpy as np def mahalanobis_distance(y, mu, sigma_inv): """ 计算给定点 y 对应的马氏距离。 参数: y: ndarray, 测试样本的数据点 mu: ndarray, 数据集的均值向量 sigma_inv: ndarray, 协方差矩阵的逆 返回: float, 马氏距离的结果 """ delta = y - mu m_dist = np.sqrt(np.dot(delta.T, np.dot(sigma_inv, delta))) return m_dist # 示例数据 data = np.array([[1, 2], [3, 4], [5, 6]]) point_to_test = np.array([7, 8]) # 计算均值和协方差矩阵及其逆 mean_vector = np.mean(data, axis=0) cov_matrix = np.cov(data, rowvar=False) inv_cov_matrix = np.linalg.inv(cov_matrix) # 使用函数计算马氏距离 distance_result = mahalanobis_distance(point_to_test, mean_vector, inv_cov_matrix) print(f"The Mahalanobis Distance is {distance_result}") ``` 上述代码展示了如何利用已知数据集来估计均值和协方差矩阵,并进一步求解目标测试点相对于这些统计特性的 Mahalanobis 距离[^5]。 ### 结论 通过以上介绍可以看出,在实际应用中,当面对具有复杂关联模式的数据集合时,采用 Mahalanobis 距离往往能提供更为精确有效的分析手段。这尤其体现在诸如异常探测等领域之中[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yhwang-hub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值