MutSigCV结合在线分析
2023年测试
maf数据下载处理
进行数据下载
##MAF文件处理
rm(list=ls())
library(data.table)
dir.path <- "文件路径"
# 获取所有maf文件路径
all.maf <- list.files(path = dir.path, pattern = ".gz",
full.names = T, recursive = T)
all.maf[1:3]# 看看前3个
maf.list <- lapply(all.maf, data.table::fread,
sep = "\t",
header = T,
skip = 7 # 前面7行都不要
)
##然后进行合并##
maf.merge <- do.call(rbind,maf.list)
dim(maf.merge)
maf<-maf.merge
save(maf,file="文件_maf.Rdata")
genepattern注册_hx2024的博客-CSDN博客
进行GenePattern注册
maf在线分析准备
input准备
##提取相关文件进行突变驱动基因分析##
rm(list = ls())
library(tidyverse)
library(stringr)
library(maftools)
load("文件maf.Rdata")##就是上面保存的文件
maf1 <- maf[,c("Tumor_Sample_Barcode","Hugo_Symbol","NCBI_Build","Chromosome",
"Start_Position","End_Position","Strand","Variant_Classification",
"Variant_Type","Reference_Allele","Tumor_Seq_Allele1","Tumor_Seq_Allele2")]
##input 需要maf格式文件 才能输入##
maf <- MAF(maf1) # 将MAF对象保存为maf格式文件
write.mafSummary(maf = maf, basename = '文件_for_MutSig_file')
##准备好的文件可以进行在线分析
进行maf在线MutSigCV分析
在线输入文件除了自己准备的maf文件,还需要辅助文件
##辅助文件下载
http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_files/gene.covariates.txt
http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_files/exome_full192.coverage.zip
http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_files/mutation_type_dictionary_file.txt
准备好所有文件,进行在线分析
文件上传
在线分析
点击运行
结果
最后挑选绘图
参考
突变瀑布图及亚型突变瀑布_基因突变瀑布图如何准备文件_楷然教你学生信的博客-CSDN博客