Paper reading——PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume(PWC-Net)

PWC-Net是一个基于深度学习的光流估计模型,由金字塔、扭曲和代价体积三个部分组成。它通过使用前一帧的光流估计扭曲后一帧的特征,并构建代价体积来优化光流预测,表现出优于FlowNet的性能。该模型适用于计算机视觉和视频处理任务。
摘要由CSDN通过智能技术生成

实现了一个effective的CNN model for 光流——PWC-Net

PWC-net是一个能够根据两张图像来输出对应的光流图

 

提出了 PWC-Net,是比flownet更优的一个模型

提出了cost-volumn

提出了一种用于光流估计的CNN模型,包括了三个部分:金字塔(Pyramid),扭曲(Warping),代价体积(Cost Volume)。每个画面有前后两个图,用第一个图的估计光流扭曲第二个图的CNN特征,将扭曲后的特征以及第一个图的特征构造一个代价体积,再来估计光流。

 

 

https://blog.csdn.net/qq_34451909/article/details/106361192

https://zhuanlan.zhihu.com/p/67302545

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值