实现了一个effective的CNN model for 光流——PWC-Net
PWC-net是一个能够根据两张图像来输出对应的光流图
提出了 PWC-Net,是比flownet更优的一个模型
提出了cost-volumn
提出了一种用于光流估计的CNN模型,包括了三个部分:金字塔(Pyramid),扭曲(Warping),代价体积(Cost Volume)。每个画面有前后两个图,用第一个图的估计光流扭曲第二个图的CNN特征,将扭曲后的特征以及第一个图的特征构造一个代价体积,再来估计光流。
Paper reading——PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume(PWC-Net)
最新推荐文章于 2023-10-29 15:40:34 发布
PWC-Net是一个基于深度学习的光流估计模型,由金字塔、扭曲和代价体积三个部分组成。它通过使用前一帧的光流估计扭曲后一帧的特征,并构建代价体积来优化光流预测,表现出优于FlowNet的性能。该模型适用于计算机视觉和视频处理任务。
摘要由CSDN通过智能技术生成