飞机动力学模型推导

飞机动力学模型推导

针对最一般刚性假设下飞机动力学模型进行推导,未进行线性化处理

1. 坐标系

包含地轴系、体轴系、航迹轴系、气流轴系等 ,详见航空飞行动力学一书,此处不予赘述。

2.基本假设

关于地球基本假设:
1、略去地球旋转运动和地心的曲面运动产生的加速度影响。
2、地球本身视为平面处理,地轴系即为惯性系
3、飞机的飞行高度远小于地球半径,忽略高度不同引起的重力加速度变化影响
4、以上假设均适用于飞行高度小于30km,飞行马赫数低于3的飞行状态

关于飞机本体假设:
1、飞机上的旋转部件在飞机运动时产生的陀螺力矩与飞机本身的惯性力矩相比为小量可忽略
2、略去飞机机体弹性变形或内部活动部件对飞机飞行的影响。
3、略去飞机质量变化影响,相对飞机总质量而言,飞机燃油和滑油的单位时间消耗量不大。

3. 飞机刚体动力学方程

3.1 原始力方程

在不考虑风影响下,在地轴系上,物体平移运动动力学方程为:
m d v ⃗ d t = F a ⃗ + P ⃗ + G ⃗ m\frac{\vec{dv}}{dt}=\vec{F_a}+\vec{P}+\vec{G} mdtdv =Fa +P +G
d h ⃗ d t = ∑ M ⃗ \frac{\vec{dh}}{dt}=\sum{\vec{M}} dtdh =M
其中
v为飞机质心相对地轴系的运动速度矢量
F a F_a Fa为作用在飞机上的空气动力矢量
P为发动机推力
G为飞机本身重力矢量
h为机体相对于质心的动量矩矢量
M为作用在机体上的外力矩矢量和

3.2 坐标系转移

为方便使用需将该方程写成相对体轴系运动的形式
m ( d v ⃗ d t + ω ⃗ × v ⃗ ) = F a ⃗ + P ⃗ + G ⃗ m(\frac{\vec{dv}}{dt}+\vec{\omega}\times\vec{v})=\vec{F_a}+\vec{P}+\vec{G} mdtdv +ω ×v =Fa +P +G
d h ⃗ d t + ω ⃗ × h ⃗ = ∑ M ⃗ \frac{\vec{dh}}{dt}+\vec{\omega}\times\vec{h}=\sum{\vec{M}} dtdh +ω ×h =M

这里用到理论力学基础知识,科氏加速度推导:
https://www.zhihu.com/question/37384392?sort=created(有图示)
此处只用到定系中矢量在动系中观察多了一项:该矢量叉乘w

叉乘运算可简化为以下行列式:

∣ i j k ω x ω y ω z v x v y v z ∣ \begin{vmatrix} i &j &k\\ \omega_x &\omega_y&\omega_z\\v_x &v_y &v_z\end{vmatrix} iωxvxjωyvykωzvz

此处速度v矢量已经变成体轴系下速度矢量
[ u v w ] \begin{bmatrix}u\\v\\w\end{bmatrix} uvw
体轴系下角速度矢量w也写成如下形式:
[ p q r ] \begin{bmatrix}p\\q\\r\end{bmatrix} pqr
气动力直接分解在体轴系上,重力根据体轴系与地轴系转换关系计算分配到体轴系上,推力一般指向体轴系X轴负方向。
根据飞行控制系统一书由地面轴系转向体轴系的矩阵最后一列计算可得,体轴系重力分量为:
[ − G s i n θ G c o s θ s i n ϕ G c o s θ c o s ϕ ] \begin{bmatrix}-Gsin\theta\\Gcos\theta sin\phi\\Gcos\theta cos\phi\end{bmatrix} GsinθGcosθsinϕGcosθcosϕ
将上述表达式代入相对体轴系动力学方程式:
m ( [ u ˙ v ˙ w ˙ ] + [ 0 − r q r 0 − p − q p 0 ] [ u v w ] ) = [ F x F y F z ] + [ − G s i n θ G c o s θ s i n ϕ G c o s θ c o s ϕ ] m(\begin{bmatrix}\dot{u}\\\dot{v}\\\dot{w}\end{bmatrix}+\begin{bmatrix}0&-r&q\\r&0&-p\\-q&p&0\end{bmatrix} \begin{bmatrix}u\\v\\w\end{bmatrix})=\begin{bmatrix}F_x\\F_y\\F_z\end{bmatrix}+\begin{bmatrix}-Gsin\theta\\Gcos\theta sin\phi\\Gcos\theta cos\phi\end{bmatrix} m(u˙v˙w˙+0rqr0pqp0uvw)=FxFyFz+GsinθGcosθsinϕGcosθcosϕ展开上式可得: u ˙ = r v − q w − g s i n θ + 1 m [ X a e r o + P x ] \dot u=rv-qw-gsin\theta+\frac{1}{m}[X_{aero}+P_x] u˙=rvqwgsinθ+m1[Xaero+Px]
v ˙ = − r u + p w + g c o s θ s i n ϕ + 1 m [ Y a e r o + P y ] \dot v=-ru+pw+gcos\theta sin\phi+\frac{1}{m}[Y_{aero}+P_y] v˙=ru+pw+gcosθsinϕ+m1[Yaero+Py]
w ˙ = q u − p v + g c o s θ c o s ϕ + 1 m [ Z a e r o + P z ] \dot w=qu-pv+gcos\theta cos\phi+\frac{1}{m}[Z_{aero}+P_z] w˙=qupv+gcosθcosϕ+m1[Zaero+Pz]
以上为线运动动力学方程,接下来分析角运动方程:
角速率在体轴系上的分量为:
[ p ˙ q ˙ r ˙ ] \begin{bmatrix}\dot p\\\dot q\\\dot r\end{bmatrix} p˙q˙r˙
动量矩表达式:
h x = I x p − I x y q − I x z r h_x=I_xp-I_{xy}q-I_{xz}r hx=IxpIxyqIxzr
h y = I y q − I x y p − I y z r h_y=I_yq-I_{xy}p-I_{yz}r hy=IyqIxypIyzr
h z = I z r − I x z p − I y z q h_z=I_zr-I_{xz}p-I_{yz}q hz=IzrIxzpIyzq
I x 、 I y 、 I z I_x、I_y、I_z IxIyIz分别为飞机对Ox、Oy、Oz体轴的转动惯量
I x y 、 I y z 、 I x z I_{xy}、I_{yz}、I_{xz} IxyIyzIxz分别为飞机对Ox与Oy轴、Oy与Oz轴、Oy与Oz体轴的惯性积

对动量矩求导:
h ˙ x = I ˙ x p + I x p ˙ − I ˙ x y q − I x y q ˙ − I ˙ x z r − I x z r ˙ \dot h_x=\dot I_xp+I_x\dot p-\dot I_{xy}q-I_{xy}\dot q-\dot I_{xz}r-I_{xz}\dot r h˙x=I˙xp+Ixp˙I˙xyqIxyq˙I˙xzrIxzr˙
h ˙ y = I ˙ y q + I y q ˙ − I ˙ x y p − I x y p ˙ − I ˙ y z r − I y z r ˙ \dot h_y=\dot I_yq+I_y\dot q-\dot I_{xy}p-I_{xy}\dot p-\dot I_{yz}r-I_{yz}\dot r h˙y=I˙yq+Iyq˙I˙xypIxyp˙I˙yzrIyzr˙
h ˙ z = I ˙ z r + I z r ˙ − I ˙ x z p − I x z p ˙ − I ˙ y z q − I y z q ˙ \dot h_z=\dot I_zr+I_z\dot r-\dot I_{xz}p-I_{xz}\dot p-\dot I_{yz}q-I_{yz}\dot q h˙z=I˙zr+Izr˙I˙xzpIxzp˙I˙yzqIyzq˙
假设飞机按照纵向中心平面对称,那么 I x y = I y z = 0 I_{xy}=I_{yz}=0 Ixy=Iyz=0

动量矩可以写成:
L x = I x p − I x z r L_x=I_xp-I_{xz}r Lx=IxpIxzr
L y = I y q L_y=I_yq Ly=Iyq
L z = I z r − I x z p L_z=I_zr-I_{xz}p Lz=IzrIxzp

动量矩导数可以写成:
L ˙ x = I ˙ x p + I x p ˙ − I ˙ x z r − I x z r ˙ \dot L_x=\dot I_xp+I_x\dot p-\dot I_{xz}r-I_{xz}\dot r L˙x=I˙xp+Ixp˙I˙xzrIxzr˙
L ˙ y = I ˙ y q + I y q ˙ \dot L_y=\dot I_yq+I_y\dot q L˙y=I˙yq+Iyq˙
L ˙ z = I ˙ z r + I z r ˙ − I ˙ x z p − I x z p ˙ \dot L_z=\dot I_zr+I_z\dot r-\dot I_{xz}p-I_{xz}\dot p L˙z=I˙zr+Izr˙I˙xzpIxzp˙

假设飞行器质量不变,所以惯性矩和惯性积都是时不变的常量:
L ˙ x = I x p ˙ − I x z r ˙ \dot L_x=I_x\dot p-I_{xz}\dot r L˙x=Ixp˙Ixzr˙
L ˙ y = I y q ˙ \dot L_y=I_y\dot q L˙y=Iyq˙
L ˙ z = I z r ˙ − I x z p ˙ \dot L_z=I_z\dot r-I_{xz}\dot p L˙z=Izr˙Ixzp˙

代入前动量矩式子:
I x p ˙ − I x z r ˙ − r [ I y q ] + q [ r I z − p I x z ] = L I_x\dot p-I_{xz}\dot r-r[I_yq]+q[rI_z-pI_{xz}]=L Ixp˙Ixzr˙r[Iyq]+q[rIzpIxz]=L
I y q ˙ + r [ I x p − r I x z ] − p [ r I z − p I x z ] = M I_y\dot q+r[I_xp-rI_{xz}]-p[rI_z-pI_{xz}]=M Iyq˙+r[IxprIxz]p[rIzpIxz]=M
I z r ˙ − I x z p ˙ − q [ I x p − I x z r ] + p [ I y q ] = N I_z\dot r-I_{xz}\dot p-q[I_xp-I_{xz}r]+p[I_yq]=N Izr˙Ixzp˙q[IxpIxzr]+p[Iyq]=N

至此动力学方程推导完成,只需将动量矩式子整理成角速率导数在左,剩下部分在右的式子即可形成经典方程,再加入运动学方程模型就建立完成了。剩下的就是坐标系的再度转换。详见《航空飞行动力学》与《飞行控制系统》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值