固定翼飞行器气动模型(一)——气动力

本文共计3000字,阅读完成预计8分钟

什么是固定翼飞行器的气动模型?固定翼飞行器的气动模型是描述其在空气中运动时所受到的空气动力和力矩的数学模型。这个模型通常基于流体力学和空气动力学的原理,以理解和预测飞机的飞行性能。六自由度的运动仿真,也必须先知道固定翼飞行器所受到的所有外力以及外力矩。系列文章第一篇先从气动力开始讲解。


一、作用于飞行器的外力、坐标系

  1. 作用于机体系下的飞行器外力有重力W, 推力T和气动力A。通常气动力由升力L、阻力D和侧向力C组成,分别位于气流坐标系中的z_a轴,x_a轴,y_a轴。

  2. 机体(body)坐标系Ox_by_bz_b

  • 原点O取在飞行器质心处,坐标系与飞行器固连;

  • x_b轴在飞行器对称平面内,并平行于飞行器的纵轴且指向头部

  • y_b轴垂直于飞行器对称平面,指向机身右方;

  • z_b轴在飞行器对称平面内,与轴垂直并指向机身下方。

    3. 气流(air)坐标系Ox_ay_az_a

  • 原点O取在飞行器质心处,坐标系与飞行器固连;

  • x_a与空速V重合

  • z_a轴在飞行器对称平面内,与轴垂直并指向机身下方

  • y_a轴垂直于平面,其方向按照右手定则确定。


二、升力

升力L,是飞行器总的空气动力A在气流坐标系z_a轴上的分量,向上为正。实践表明升力的大小与动压和飞行器的参考面积成正比,其表达式为:

为了深入理解和应用Matlab固定翼无人机路径规划仿真中的作用,推荐您查看《小型固定翼无人机数学模型及其Matlab仿真》这资源。该资源详细介绍了如何在Matlab环境下构建无人机的数学模型,并且通过智能优化算法实现有效的路径规划。 参考资源链接:[小型固定翼无人机数学模型及其Matlab仿真](https://wenku.csdn.net/doc/6ng88wzid8?spm=1055.2569.3001.10343) 首先,要构建固定翼无人机的数学模型,你需要定义无人机的运动方程,包括动力学方程和运动学方程。这些方程通常涉及到无人机的质量、惯性、升力、推力等参数。使用Matlab中的Simulink工具,可以直观地搭建这些数学模型,并进行初步的仿真测试。 接下来,为了实现路径规划,智能优化算法的引入变得至关重要。粒子群优化(PSO)和遗传算法(GA)是两种常用且有效的优化方法,它们可以在多维空间中搜索最优路径。在Matlab中,你可以利用Global Optimization Toolbox提供的函数来实现PSO或GA算法。通过设置适当的适应度函数,可以评估不同路径的优劣,并最终确定条高效的飞行路径。 在仿真过程中,你需要利用Matlab强大的计算和绘图功能,来可视化无人机的飞行轨迹,并分析路径规划算法的性能。例如,你可以使用Matlab内置的绘图函数,如plot、compass等,来展示无人机的航迹和状态变化。此外,信号处理技术在无人机的导航和控制中也扮演着重要角色。你可能需要应用滤波算法(如卡尔曼滤波)来处理传感器数据,确保导航的准确性和稳定性。 综合以上步骤,通过Matlab的仿真平台,你不仅可以构建出符合实际情况的固定翼无人机数学模型,并且可以应用智能优化算法进行高效的路径规划,从而实现无人机自主飞行的仿真验证。如果你希望进步探索Matlab无人机领域的更多应用,该资源同样提供了有关神经网络、信号处理、元胞自动机和图像处理的示例和讨论,为你的研究和项目合作提供了宝贵的参考。 参考资源链接:[小型固定翼无人机数学模型及其Matlab仿真](https://wenku.csdn.net/doc/6ng88wzid8?spm=1055.2569.3001.10343)
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值