Code Llama系列教程之 微调 CodeLlama 34B 以进行聊天(打造自己的代码AI)

这篇博文介绍了如何微调CodeLlama 34B模型,包括使用QLora进行微调,模型的量化以及通过文本生成推理进行部署。文章详细阐述了每个步骤,并提供了相关脚本链接,最终将模型部署为生产就绪状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

虽然 Meta 的 Llama2 在 AI 领域引起了广泛关注,但 34b 模型却缺席了相当长一段时间。对于许多人来说,这个 34b 模型是运行本地 LLM 的理想选择,因为它与使用 4 位量化的单个 4090 GPU 兼容。我一直在热切地等待 Meta 发布这个特定的模型。幸运的是,Meta 最近推出了 CodeLlama,这是一个针对编码相关任务训练的专门模型。然而,根据他们的论文,由于原始 Llama2 模型是在 2t 个令牌上训练的,因此它在原始 Llama2 的 34b 个令牌上额外训练了 500b 个令牌。Codellama 仅在训练期间添加了额外的 500b 令牌,并且从概念上讲将针对各种下游领域进行进一步微调。

在这篇博文中,我将引导您完成微调 CodeLlama 34B 模型的完整过程。培训结束后,我将指导您如何量化模型并使用 Huggingface 的文本生成推理框架进行部署。

QLora 代码Llama 34B

合并适配器

完成微调过程后,最好将适配器合并回基本模型。由于涉及额外的参数和计算,直接在适配器上运行推理可能会导致性能降低。

您可以使用以下脚本在CP​​U上合并适配器以避免OOM: https: //gist.github.com/mzbac/16b0f4289059d18b8ed34345ae1ab168

python merge_peft_adapters.py - 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值